• Title/Summary/Keyword: Stator Flux Control

Search Result 351, Processing Time 0.041 seconds

Analysis Of Induction Motor Direct Control Using VI Space Vector (VI 공간벡터와 관련한 유도전동기 Direct Control 분석)

  • 오성업
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.207-210
    • /
    • 2000
  • In this paper a theoretical formulation of the direct control relating the action exerted by the inverter space vectors on the stator flux and the torque of Induction motor is analyzed. From the equation the scheme of the inverter switching is proposed and influence of the stator flux and the electromagnetic torque in each switching pattern is also analyzed.

  • PDF

A PMSM Motion Control System with Direct Torque Control (직접토크제어에 의한 PMSM의 위치제어 시스템)

  • 김남훈
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.615-619
    • /
    • 2000
  • This paper presents an implementation of digital motion control system of Surface Permanent-Magnet Synchronous Motor(SPMSM) vector drives with a direct torque control(DTC) using the 16bit DSP TMS320F240 The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent control for motors which can be yield enhanced operation fewer system components lower system cost increased efficiency and high performance The system presented are stator flux and torque observer of stator flux feedback model that inputs are current and voltage sensing of motor terminal and angle for a low speed operating area two hysteresis band controllers an optimal switching look-up table and IGBT voltage source inverter by using fully integrated control software. The developed control system are shown a good motion control response characteristic results and high performance features using 1.0Kw purposed servo drive SPMSM.

  • PDF

A Speed Sensorless SPMSM Position Control System with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 SPMSM의 속도 제어 시스템)

  • Kim, Min-Ho;Kim, Nam-Hun;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.277-280
    • /
    • 2001
  • This paper presents a speed sensorless implementation of digital speed control system of Surface Permanent-Magnet Synchronous Motor(SPMSM) drives with a direct torque control(DTC). The system presented are stator flux and torque observer of stator flux feedback control model that inputs are current and voltage sensing of motor terminal with estimated rotor angle for a low speed operating area, two hysteresis band controllers, an optimal switching look-up table, rotor speed estimator, and IGBT voltage source inverter by using fully integrated control software. The developed speed sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw purposed servo drive SPMSM.

  • PDF

A Sensorless Position Control System of SPMSM with Direct Torque Control (직접 토크제어에 의한 센서리스 SPMSM의 위치 제어 시스템)

  • Kim Min-Ho;Kim Nam-Hun;Kim Dong-Hee;Kim Min-Huei;Hwang Don-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.397-400
    • /
    • 2001
  • This paper presents a implementation of digital sensorless position control system of surface permanent-magnet synchronous motor (SPMSM) drive with a direct torque control (DTC). The system are stator flux and torque observer of stator flux feedback control model that inputs are current and voltage sensing of motor terminal with estimated rotor angle for a low speed operating area, two hysteresis band controllers, an optimal switching look-up table, rotor speed estimator, and IGBT voltage source inverter by using fully integrated control software. The developed sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0 (kW) purposed servo drive SPMSM.

  • PDF

Damping for Wind Turbine Electrically Excited Synchronous Generators

  • Tianyu, Wang;Guojie, Li;Yu, Zhang;Chen, Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.801-809
    • /
    • 2016
  • The electrically excited synchronous generator (EESG) is applied in wind turbine systems recently. In an EESG control system, electrical torque is affected by stator flux and rotor current. So the control system is more complicated than that of the permanent-magnet synchronous generator (PMSG). Thus, the higher demanding of the control system is required especially in case of wind turbine mechanical resonance. In this paper, the mechanism of rotor speed resonant phenomenon is introduced from the viewpoint of mechanics firstly, and the characteristics of an effective damping torque are illustrated through system eigenvalues analysis. Considering the variables are tightly coupled, the four-order small signal equation for torque is derived considering stator and rotor control systems with regulators, and the bode plot of the closed loop transfer function is analyzed. According to the four-order mathematical equation, the stator flux, stator current, and electrical torque responses are derived by torque reference step and ramp in MATLAB from a pure mathematical deduction, which is identical with the responses in PSCAD/EMTDC simulation results. At last, the simulation studies are carried out in PSCAD software package to verify the resonant damping control strategy used in the EESG wind turbine system.

Virtual Signal Injected MTPA Control for DTC Five-Phase IPMSM Drives

  • Liu, Guohai;Yang, Yuqi;Chen, Qian
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.956-967
    • /
    • 2019
  • This paper introduces a virtual signal injected maximum torque per ampere (MTPA) control strategy for direct-torque-controlled five-phase interior permanent magnet synchronous motor (IPMSM) drives. The key of the proposed method is that a high frequency signal is injected virtually into the stator flux linkage. Then the responding stator current is calculated and regulated to compensate the amplitude of the flux linkage. This is done according to the relationship between the stator current and the stator flux linkage. Since the proposed method does not inject any real signals into the motor, it does not cause any of the problems associated with high-frequency signals, such as additional copper loss and extra torque ripple. Simulation and experimental results are offered to verify the effectiveness of the proposed method.

A Study on the Start-Up Scheme of Direct Vector Controlled Induction Motor System (유도전동기의 직접 벡터제어 시스템에서 기동기법에 관한 연구)

  • 전태원;최명규;유우종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.427-434
    • /
    • 2000
  • The paper proposes a zero speed start-up scheme of direct rector controlled induction motor drive without any torque jerk. At standstill condition, a method is derived to calculate a stator flux with only stator current. The programmable 3-stage low pass filters with programmable time constants is used in order to solute the problem of integration for stator flux estimation in the direct vector control mode. Due to the time delay of 3-stage low pass filter, the status flux decreases rapidly and also the torque jerk occurs during the transition from standstill mode to the direct rector control mode. A feedforward control strategy of the stator flux is suggested to prevent the torque jerk at start-up. Through results of simulation and experiment with 32 bit DSP, the performance of the start-up scheme is verified.

  • PDF

Maximum Efficiency Control of a Stator Flux-Oriented Induction Motor Drive (유도전동기 고정자자속 기준제어의 최대효율제어)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.117-122
    • /
    • 2006
  • Maximum efficiency control scheme in a stator flux-oriented induction motor drive is proposed for minimizing input dc power. Flux level is decreased in steps for searching the minimum input dc power. In addition, Torque equation, slip angular frequency, and decoupling compensation current considering iron loss resistance is used. Simulation and experimental results verify the effectiveness of the proposed method.

An Improved Flux Observer for Sensorless Permanent Magnet Synchronous Motor Drives with Parameter Identification

  • Lin, Hai;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.516-523
    • /
    • 2013
  • This paper investigates an improved stator flux linkage observer for sensorless permanent magnet synchronous motor (PMSM) drives using a voltage-based flux linkage model and an adaptive sliding mode variable structure. We propose a new observer design that employs an improved sliding mode reaching law to achieve better estimation accuracy. The design includes two models and two adaptive estimating laws, and we illustrate that the design is stable using the Popov hyper-stability theory. Simulation and experimental results demonstrate that the proposed estimator accurately calculates the speed, the stator flux linkage, and the resistance while overcoming the shortcomings of traditional estimators.

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives (영구자석 동기전동기의 센서리스 속도제어 시스템)

  • Won, Tae-Hyun;Park, Han-Woong;Song, Dall-Sup;Kim, Moon-Soo;Lee, Man-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.112-116
    • /
    • 2002
  • A sensorless control strategy for permanent magnet synchronous motors is presented in this paper. A speed control scheme based on the measurement and observation of stator current, voltage. and flux vector is proposed. Two phase voltages and two stator currents are measured and processed in discrete form in DSP. The rotor position and speed are estimated through the stator flux and its derivative estimation. Flux and its derivative are calculated in the stationary reference frame and used to estimate the speed and position. The rotor position angle is then used in a microcontroller to produce the appropriate stator current command signals for the hysteresis current controller of the inverter. The closed-loop speed control has been shown to be effective from standstill to rated speed. Moreover, a flux drift problem caused by the integration can be eliminated so that a stable sensorless starting and running operation can be achieved. Computer simulation and experimental results are presented to demonstrate the effectiveness of the proposed scheme.

  • PDF