• Title/Summary/Keyword: Statistical-Mechanical Model

Search Result 246, Processing Time 0.028 seconds

Combustion Characteristics of Model Gas Turbine Combustor -Radical Luminous Intensity and Local Equivalence Ratio Measurement- (모형 가스터빈 연소기의 연소특성 -라디칼 자발광강도와 국소당량비계측에 대하여-)

  • 최병륜;김태한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1064-1071
    • /
    • 1994
  • There are three active radicals which become to the scale of flame diagnostics at the flame front. They are OH, CH and $C_2$ radical. For this, optical measurement system which could monitor simultaneously the luminous waves of three radicals, was constructed. These were analyzed statistically into the cross correlation, coherence and phase. Through such an statistical treatment, combustion characteristics was investigated at the primary zone of gas turbine combustor. The local equivalence ratio was predicted with the ratio of luminuous intensity between CH and $C_2$ radical. This result was matched up to the equivalence ratio calculated from gas composition within 5% error. In general, equivalence ratio was said to be 1.0 at flame front, but it could be increased up to about 1.2 depending on the degree of swirl intensity in case of changing properly the air amount of primary zone.

An Analysis of Heat Losses from Receivers for a Multifaceted Parabolic Solar Collector (접시형 태양열 집광시스템용 흡수기의 열손실 해석)

  • Ryu, S.Y.;Seo, T.B.;Kang, Y.H.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.61-73
    • /
    • 2000
  • Heat losses from receivers for a dish-type solar energy collecting system are numerically investigated. The analytical method for predicting conductive heat loss from a cavity receiver is used. The Stine and McDonald Model is used to estimate convective heat loss. Two kinds of techniques for the radiation analysis are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. Based on the heat loss analysis, the performance of two different receivers for multifaceted parabolic solar collectors with several flat facets can be estimated, and the optimal facet size is obtained.

  • PDF

Nonlinear modeling of shear strength of SFRC beams using linear genetic programming

  • Gandomi, A.H.;Alavi, A.H.;Yun, G.J.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.1-25
    • /
    • 2011
  • A new nonlinear model was developed to evaluate the shear resistance of steel fiber-reinforced concrete beams (SFRCB) using linear genetic programming (LGP). The proposed model relates the shear strength to the geometrical and mechanical properties of SFRCB. The best model was selected after developing and controlling several models with different combinations of the influencing parameters. The models were developed using a comprehensive database containing 213 test results of SFRC beams without stirrups obtained through an extensive literature review. The database includes experimental results for normal and high-strength concrete beams. To verify the applicability of the proposed model, it was employed to estimate the shear strength of a part of test results that were not included in the modeling process. The external validation of the model was further verified using several statistical criteria recommended by researchers. The contributions of the parameters affecting the shear strength were evaluated through a sensitivity analysis. The results indicate that the LGP model gives precise estimates of the shear strength of SFRCB. The prediction performance of the model is significantly better than several solutions found in the literature. The LGP-based design equation is remarkably straightforward and useful for pre-design applications.

A study on the analysis of the failure probability based on the concept of loss probability (결손확률모델에 의한 파손확률 해석에 관한 연구)

  • 신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2037-2047
    • /
    • 1991
  • Strength is not simply a single given value but rather is a statistical one with certain distribution functions. This is because it is affected by many unknown factors such as size, shape, stress distribution, and combined stresses. In this study, a model of loss probability is proposed in view of the fact that one of the fundamental configuration of nature is hexagonal, for example, the shapes of lattice unit, grain, and so on. The model sues the concept of loss of certain element in place of Jayatilaka-Trustrum's length and angle of cracks. Using this model, the loss probability due to each loss of certain elements is obtained. Then, the maximum principal stress is calculated by the finite element method at the centroid of the elements under the tensile load for the 4,095 models of analysis. Finally, the failure probability of the brittle materials is obtained by multiplying the loss probability by the ratio of the maximum principal stress to theoretical tensile strength. Comparison of the result of the Jayatilaka-Trustrum's model and the proposed model shows that the failure probabilities by the two methods are in good agreement. Further, it is shown that the parametric relationship of semi-crack lengths for various degrees of birittleness can be determined. Therefore, the analysis of the failure probability suing the proposed model is shown to be promising as a new method for the study of the failure probability of birttle materials.

Study on Regrouping of Gray Gases in spectral WSGGM for Arbitrary Mixtures of CO2 and H2O Gases (이산화탄소-수증기 혼합가스에 대한 파장별 회색가스가중합법에서 회색가스재조합에 대한 연구)

  • Park, Won-Hee;Kim, Tae-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.227-235
    • /
    • 2003
  • The WSGG-based narrow band model was employed to solve the radiative transfer equations along isothermal and non-isothermal paths through $CO_2-H_2O-N_2$ gas mixtures at 1 atm. When the WSGGM is applied for arbitrary gas mixtures by considering the multiplication property of transmissivity in overlapping bands, the number of gray gases is significantly increased. To reduce the computation time, three different regrouping methods for the gray gases are tested in obtaining the mean absorption coefficient for each gray gas group. Among them, the regrouping method by minimizing the regrouping error shows the best results. For the isothermal media, 10 gray gases show fairly good agreement with the results by statistical narrow band(SNB) model which are regarded as reference solutions. For non-isothermal media, 20 gray gases show good agreement with reference solutions.

Application of Temperature Inversion by Using Spectral Radiation Intensities (파장별 복사강도를 사용한 온도 역계산의 적용)

  • Yang, Soo-Seok;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.533-542
    • /
    • 2000
  • Analytical experiments to determine the line-of-sight temperature distribution is conducted by using spectral radiation intensities. For this study, fourteen narrow bands of $25cm^{-1}$ interval in $CO_2\;4.3{\mu}m$ band ($2,050cm^{-1}$ to $2375cm^{-1}$) are selected. The applied system is a one-dimensional gas slab filled with 100% $CO_2$ gas at 1 atm. Two types of temperature profile are tested; parabolic and boundary layer types. Three kinds of radiation calculation are used in the iteration procedure for the temperature inversion; LBL(Line by Line), SNB(Statistical Narrow Band) and WNB(WSGGM. based Narrow Band) models. The LBL solution shows perfect agreement while some error of temperature prediction is caused by radiation modeling error when using SNB and WNB models. The inversion result shows that the WNB model may be used more accurately in spectral remote sensing techniques than the traditional SNB model.

Simulation of Wave Propagation by Cellular Automata Method (세포자동자법에 의한 파동전파의 시뮬레이션)

  • ;;森下信
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.610-614
    • /
    • 2000
  • Cellular Automata(CA)s are used as a simple mathematical model to investigate self-organization in statistical mechanics, which are originally introduced by von Neumann and S. Ulam at the end of the 1940s. CAs provide a framework for a large class of discrete models with homogeneous interactions, which are characterized by the following fundamental properties: 1) CAs are dynamical systems in which space and time are discrete. 2) The systems consist of a regular grid of cells. 3) Each cell is characterized by a state taken from a finite set of states and updated synchronously in discrete time steps according to a local, identical interaction rule. 4) The state of a cell is determined by the previous states of a surrounding neighborhood of cells. A cellular automaton has been attracted wide interest in modeling physical phenomena, which are described generally, partial differential equations such as diffusion and wave propagation. This paper describes one and two-dimensional analysis of wave propagation phenomena modeled by CA, where the local interaction rules were derived referring to the Lattice Gas Model reported by Chen et al., and also including finite difference scheme. Modeling processes by using CA are discussed and the simulation results of wave propagation with one wave source are compared with that by finite difference method.

  • PDF

Shape Optimization of the Lower Control Arm using the Characteristic Function and the Fatigue Analysis (특성함수와 피로해석을 이용한 로워컨트롤암의 형상최적설계)

  • Park Youngchul;Lee Donghwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.119-125
    • /
    • 2005
  • The current automotive is seeking the improvement of performance, the prevention of environmental pollution and the saving of energy resources according to miniaturization and lightweight of the components. And the variance analysis on the basis of structure analysis and DOE is applied to the lower control am. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering weight, stress and fatigue lift. The lower control arm is performed the fatigue analysis using the load history of real road test. The design model is determined using the optimization of acquired load history with the fatigue characteristic. The characteristic function is made use of the optimization according to fatigue characteristics to consider constrained function in the optimization of DOE. The structure optimization of a lower control arm according to fatigue characteristics is performed. And the optimized design variable is D=47 m, T=36mm, W=12 mm. In the real engineering problem of considering many objective functions, the multi-objective optimization process using the mathematical programming and the characteristic function is derived an useful design solution.

A Study on Accelerated Life Prediction Automation of Gas Welded Joint of STS301L (Plug and Ring Type) (STS301L 가스용접이음재의 가속수명예측 자동화에 관한 연구 (Plug and Ring Type))

  • Baek, Seung-Yeb;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistical reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

Multi-objective Optimization in Discrete Design Space using the Design of Experiment and the Mathematical Programming (실험계획법과 수리적방법을 이용한 이산설계 공간에서의 다목적 최적설계)

  • Lee, Dong-Woo;Baek, Seok-Heum;Lee, Kyoung-Young;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2150-2158
    • /
    • 2002
  • A recent research and development has the requirement for the optimization to shorten design time of modified or new product model and to obtain more precise engineering solution. General optimization problem must consider many conflicted objective functions simultaneously. Multi-objective optimization treats the multiple objective functions and constraints with design change. But, real engineering problem doesn't describe accurate constraint and objective function owing to the limit of representation. Therefore this study applies variance analysis on the basis of structure analysis and DOE to the vertical roller mill fur portland cement and proposed statistical design model to evaluate the effect of structural modification with design change by performing practical multi-objective optimization considering mass, stress and deflection.