• 제목/요약/키워드: Statistical learning model

검색결과 541건 처리시간 0.024초

A Detecting Technique for the Climatic Factors that Aided the Spread of COVID-19 using Deep and Machine Learning Algorithms

  • Al-Sharari, Waad;Mahmood, Mahmood A.;Abd El-Aziz, A.A.;Azim, Nesrine A.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.131-138
    • /
    • 2022
  • Novel Coronavirus (COVID-19) is viewed as one of the main general wellbeing theaters on the worldwide level all over the planet. Because of the abrupt idea of the flare-up and the irresistible force of the infection, it causes individuals tension, melancholy, and other pressure responses. The avoidance and control of the novel Covid pneumonia have moved into an imperative stage. It is fundamental to early foresee and figure of infection episode during this troublesome opportunity to control of its grimness and mortality. The entire world is investing unimaginable amounts of energy to fight against the spread of this lethal infection. In this paper, we utilized machine learning and deep learning techniques for analyzing what is going on utilizing countries shared information and for detecting the climate factors that effect on spreading Covid-19, such as humidity, sunny hours, temperature and wind speed for understanding its regular dramatic way of behaving alongside the forecast of future reachability of the COVID-2019 around the world. We utilized data collected and produced by Kaggle and the Johns Hopkins Center for Systems Science. The dataset has 25 attributes and 9566 objects. Our Experiment consists of two phases. In phase one, we preprocessed dataset for DL model and features were decreased to four features humidity, sunny hours, temperature and wind speed by utilized the Pearson Correlation Coefficient technique (correlation attributes feature selection). In phase two, we utilized the traditional famous six machine learning techniques for numerical datasets, and Dense Net deep learning model to predict and detect the climatic factor that aide to disease outbreak. We validated the model by using confusion matrix (CM) and measured the performance by four different metrics: accuracy, f-measure, recall, and precision.

G러닝 수학 수업이 미국 초등학교 5학년 학생의 수학 성취도 향상에 미치는 영향 (Effectiveness of G-Learning Math Class in Increase of Math Achievement of K-5 Students in USA)

  • 위정현;원은석
    • 한국게임학회 논문지
    • /
    • 제12권1호
    • /
    • pp.79-90
    • /
    • 2012
  • 본 연구는 미국 LA 컬버시티에 소재한 라발로나 초등학교에서 5학년 1개 반을 대상으로 6주 동안 진행된 G러닝 수학 수업의 구성 과정과 그 효과성을 제시하였다. G러닝 수학 수업을 구성하기 위해 G러닝 콘텐츠의 개발, 수업의 구성, G러닝 수학 수업의 교수학습 모형, 교재개발 그리고 교사연수를 실시하였다. 이와 같은 과정을 통해 기획된 G러닝 수학 수업의 결과 수업반의 수학 성적은 약 12점 상승하여 비교반보다 높은 향상도를 보였으며, 하위집단은 22점, 상위 집단은 9점이 향상되었다. 또한, 수업 이후 G러닝에 대한 참여 학생의 흥미도와 효과에 대한 인지도가 긍정적으로 향상되었다.

가정과 수업의 협동학습이 학생의 교과에 대한 흥미와 태도에 미치는 영향 (The Effect of Cooperative Learning method in Home Economics on students′Interest and Attitude about Subject matter)

  • 양정혜;신상옥
    • 한국가정과교육학회지
    • /
    • 제10권1호
    • /
    • pp.137-151
    • /
    • 1998
  • The purpose of this study is (1)to develop the teaching plan based on Cooperative Learning approach and (2)to investigate the effect of students'Interest on Subject matter and Teaching method and Attitudes to others of the area of Foreign food in Home Economics class. Among those various types of Cooperative Learning's models, this study adopted 'Learning Together'developed by Johnsons. To investigate these purpose, subject matter were analyzed and reconstructed for Cooperative Learning. The tests were developed to evaluate the interest on the Subject matter and teaching methods, and the attitude to others of the students. 108 femail high school students were divided into two groups with 54 students-traditional learning condition, Cooperative Learning condition-and had a 5 session. The subject of the class was Foreign food including Western, Chinese, and Japanes food. Before and after the class, students were tested. The statistical methods used for the study methods used for the study were t-test. The research findings are as follows : When the students in the Cooperative Learning classes were compared before and after the test, (1)Interest on Subject matter were improved considerably(p〈.001) (2)Interest on Teaching methods were improved considerably(p〈.05) (3)Attitude to Others were improved considerably(p〈.001) Therefore when the teaching-learning model based on Cooperative Liarning was used in Home Economics class, their interest on the subject and teaching methods and attitude to others were improved.

  • PDF

자원기반학습을 위한 기록정보의 활용방안에 관한 연구 (A Study on Use of Archival Information for Resource-based Learning)

  • 한현진;이수상
    • 한국기록관리학회지
    • /
    • 제8권1호
    • /
    • pp.143-165
    • /
    • 2008
  • 본 연구에서는 교실에서의 교사와 학생을 대상으로 한 기록정보서비스에 대해서 살펴보았다. 이 연구의 목적은 기록물을 자원기반학습에 적용하여 실제로 교육현장에서 활용할 수 있는 방안을 제시하고, 그 효과를 알아보는 것이다. 이를 위해 교사집단과의 협력작업을 통해 기록-자원기반학습 모형을 개발하였다. 그리고 이를 적용한 교수학습안과 일반적인 교수학습안을 개발하여 초등학교 6학년 수업에 적용함으로써 그 효과를 알아보았다. 기록-자원기반학습의 효과에 대한 검증은 SPSS WIN 12.0을 사용하여 t-검증을 실시하였다.

주행속도 예측을 위한 모형 개발 (2차로 지방부 도로 중심으로) (Development of a model to predict Operating Speed)

  • 이종필;김성호
    • 대한교통학회지
    • /
    • 제20권1호
    • /
    • pp.131-139
    • /
    • 2002
  • 본 연구는 도로의 설계일관성 평가를 위해 지방부 2차로 도로의 평면 곡선부 85백분위 주행속도 예측모형을 기존의 회귀모형에 비해 보다 효율적이고 신뢰성 높은 인공신경 망 이론을 적용하여 개발하였다. 곡선반경, 곡선길이, 교차각, 시거, 차로폭, 차선(안쪽, 바깥쪽)과 같은 기하구조 특성에 의해 속도가 결정된다는 가정하에 30개 조사지점을 통해 얻어진 자료를 모형의 입력층 자료로 이용하였고, 입력층 변수에 따라 네 가지 유형의 신경망 모형을 제시하였다. 신경망 모형 중 다층신경 망 모형을 적용하여 은닉충의 유니트 수, 학습계수, 모멘텀계수, 학습횟수의 변화에 따른 최적 모형 구조를 도출하였다. 신경망 모형의 학습성능을 검증하기 위하여 선정된 30개 조사지점에서 20개 지점을 모형의 학습자료로 나머지 학습되지 않은 10개 지점을 예측자료로 활용하였다. 분석결과, 네 가지 유형의 신경망 모형 중에서 모형 D가 통계적 검증결과 $R^2$값이 85%이며, %RMSE=0.0204로 가장 실제값에 유사한 모형으로 평가되었다.

Sentiment Analysis on Indonesia Economic Growth using Deep Learning Neural Network Method

  • KRISMAWATI, Dewi;MARIEL, Wahyu Calvin Frans;ARSYI, Farhan Anshari;PRAMANA, Setia
    • 산경연구논집
    • /
    • 제13권6호
    • /
    • pp.9-18
    • /
    • 2022
  • Purpose: The government around the world is still highlighting the effect of the new variant of Covid-19. The government continues to make efforts to restore the economy through several programs, one of them is National Economic Recovery. This program is expected to increase public and investor confidence in handling Covid-19. This study aims to capture public sentiment on the economic growth rate in Indonesia, especially during the third wave of the omicron variant of the covid-19 virus, that is at the time in the fourth quarter of 2021. Research design, data, and methodology: The approach used in this research is to collect crowdsourcing data from twitter, in the range of 1st to 10th October 2021. The analysis is done by building model using Deep Learning Neural Network method. Results: The result of the sentiment analysis is that most of the tweets have a neutral sentiment on the Economic Growth discussion. Several central figures who discussed were Minister of Coordinating for the Economy of Indonesia, Minister of State-Owned Enterprises. Conclusions: Data from social media can be used by the government to capture public responses, especially public sentiment regarding economic growth. This can be used by policy makers, for example entrepreneurs to anticipate economic movements under certain conditions.

집합 결합과 신경망을 이용한 복합질환의 예측 (A Prediction Model for Complex Diseases using Set Association & Artificial Neural Network)

  • 최현주;김승현;위규범
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.323-330
    • /
    • 2008
  • 복합질환은 다수의 유전자들이 상호작용하여 유발되는 질병으로서, 여러 유전자들이 관여한다는 복잡성 때문에 전통적인 분석 방법을 적용하는데 한계가 있다. 최근에는 기계학습 기법을 이용한 새로운 분석 방법들이 제안되고 있다. 신경망은 이처럼 복잡한 데이터에서 일정한 패턴을 찾아 이를 분류하는데 적합한 모델이다. 그러나 다량의 데이터가 입력으로 들어오는 경우에 학습에 오랜 시간이 걸리고 패턴을 찾기가 어려워지는 단점이 있다. 본 연구에서는 다량의 SNP 데이터로부터 질병에 연관된 소수의 중요 SNP을 찾기 위한 통계학적인 방법인 집합결합(set association)과 신경망을 결합한 모델을 제시한다. 이 모델을 천식 관련 SNP 데이터에 적용하여 천식 발병 여부를 예측한 결과, 신경망만 사용했을 때보다 실행 시간도 빠르고 예측 정확도도 높았다. 이 모델은 다른 복합질환의 예측에도 효과적으로 사용할 수 있을 것으로 기대한다.

Export-Import Value Nowcasting Procedure Using Big Data-AIS and Machine Learning Techniques

  • NICKELSON, Jimmy;NOORAENI, Rani;EFLIZA, EFLIZA
    • Asian Journal of Business Environment
    • /
    • 제12권3호
    • /
    • pp.1-12
    • /
    • 2022
  • Purpose: This study aims to investigate whether AIS data can be used as a supporting indicator or as an initial signal to describe Indonesia's export-import conditions in real-time. Research design, data, and methodology: This study performs several stages of data selection to obtain indicators from AIS that truly reflect export-import activities in Indonesia. Also, investigate the potential of AIS indicators in producing forecasts of the value and volume of Indonesian export-import using conventional statistical methods and machine learning techniques. Results: The six preprocessing stages defined in this study filtered AIS data from 661.8 million messages to 73.5 million messages. Seven predictors were formed from the selected AIS data. The AIS indicator can be used to provide an initial signal about Indonesia's import-export activities. Each export or import activity has its own predictor. Conventional statistical methods and machine learning techniques have the same ability both in forecasting Indonesia's exports and imports. Conclusions: Big data AIS can be used as a supporting indicator as a signal of the condition of export-import values in Indonesia. The right method of building indicators can make the data valuable for the performance of the forecasting model.

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

Goal-oriented Movement Reality-based Skeleton Animation Using Machine Learning

  • Yu-Won JEONG
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.267-277
    • /
    • 2024
  • This paper explores the use of machine learning in game production to create goal-oriented, realistic animations for skeleton monsters. The purpose of this research is to enhance realism by implementing intelligent movements in monsters within game development. To achieve this, we designed and implemented a learning model for skeleton monsters using reinforcement learning algorithms. During the machine learning process, various reward conditions were established, including the monster's speed, direction, leg movements, and goal contact. The use of configurable joints introduced physical constraints. The experimental method validated performance through seven statistical graphs generated using machine learning methods. The results demonstrated that the developed model allows skeleton monsters to move to their target points efficiently and with natural animation. This paper has implemented a method for creating game monster animations using machine learning, which can be applied in various gaming environments in the future. The year 2024 is expected to bring expanded innovation in the gaming industry. Currently, advancements in technology such as virtual reality, AI, and cloud computing are redefining the sector, providing new experiences and various opportunities. Innovative content optimized for this period is needed to offer new gaming experiences. A high level of interaction and realism, along with the immersion and fun it induces, must be established as the foundation for the environment in which these can be implemented. Recent advancements in AI technology are significantly impacting the gaming industry. By applying many elements necessary for game development, AI can efficiently optimize the game production environment. Through this research, We demonstrate that the application of machine learning to Unity and game engines in game development can contribute to creating more dynamic and realistic game environments. To ensure that VR gaming does not end as a mere craze, we propose new methods in this study to enhance realism and immersion, thereby increasing enjoyment for continuous user engagement.