Al-Sharari, Waad;Mahmood, Mahmood A.;Abd El-Aziz, A.A.;Azim, Nesrine A.
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.131-138
/
2022
Novel Coronavirus (COVID-19) is viewed as one of the main general wellbeing theaters on the worldwide level all over the planet. Because of the abrupt idea of the flare-up and the irresistible force of the infection, it causes individuals tension, melancholy, and other pressure responses. The avoidance and control of the novel Covid pneumonia have moved into an imperative stage. It is fundamental to early foresee and figure of infection episode during this troublesome opportunity to control of its grimness and mortality. The entire world is investing unimaginable amounts of energy to fight against the spread of this lethal infection. In this paper, we utilized machine learning and deep learning techniques for analyzing what is going on utilizing countries shared information and for detecting the climate factors that effect on spreading Covid-19, such as humidity, sunny hours, temperature and wind speed for understanding its regular dramatic way of behaving alongside the forecast of future reachability of the COVID-2019 around the world. We utilized data collected and produced by Kaggle and the Johns Hopkins Center for Systems Science. The dataset has 25 attributes and 9566 objects. Our Experiment consists of two phases. In phase one, we preprocessed dataset for DL model and features were decreased to four features humidity, sunny hours, temperature and wind speed by utilized the Pearson Correlation Coefficient technique (correlation attributes feature selection). In phase two, we utilized the traditional famous six machine learning techniques for numerical datasets, and Dense Net deep learning model to predict and detect the climatic factor that aide to disease outbreak. We validated the model by using confusion matrix (CM) and measured the performance by four different metrics: accuracy, f-measure, recall, and precision.
본 연구는 미국 LA 컬버시티에 소재한 라발로나 초등학교에서 5학년 1개 반을 대상으로 6주 동안 진행된 G러닝 수학 수업의 구성 과정과 그 효과성을 제시하였다. G러닝 수학 수업을 구성하기 위해 G러닝 콘텐츠의 개발, 수업의 구성, G러닝 수학 수업의 교수학습 모형, 교재개발 그리고 교사연수를 실시하였다. 이와 같은 과정을 통해 기획된 G러닝 수학 수업의 결과 수업반의 수학 성적은 약 12점 상승하여 비교반보다 높은 향상도를 보였으며, 하위집단은 22점, 상위 집단은 9점이 향상되었다. 또한, 수업 이후 G러닝에 대한 참여 학생의 흥미도와 효과에 대한 인지도가 긍정적으로 향상되었다.
The purpose of this study is (1)to develop the teaching plan based on Cooperative Learning approach and (2)to investigate the effect of students'Interest on Subject matter and Teaching method and Attitudes to others of the area of Foreign food in Home Economics class. Among those various types of Cooperative Learning's models, this study adopted 'Learning Together'developed by Johnsons. To investigate these purpose, subject matter were analyzed and reconstructed for Cooperative Learning. The tests were developed to evaluate the interest on the Subject matter and teaching methods, and the attitude to others of the students. 108 femail high school students were divided into two groups with 54 students-traditional learning condition, Cooperative Learning condition-and had a 5 session. The subject of the class was Foreign food including Western, Chinese, and Japanes food. Before and after the class, students were tested. The statistical methods used for the study methods used for the study were t-test. The research findings are as follows : When the students in the Cooperative Learning classes were compared before and after the test, (1)Interest on Subject matter were improved considerably(p〈.001) (2)Interest on Teaching methods were improved considerably(p〈.05) (3)Attitude to Others were improved considerably(p〈.001) Therefore when the teaching-learning model based on Cooperative Liarning was used in Home Economics class, their interest on the subject and teaching methods and attitude to others were improved.
본 연구에서는 교실에서의 교사와 학생을 대상으로 한 기록정보서비스에 대해서 살펴보았다. 이 연구의 목적은 기록물을 자원기반학습에 적용하여 실제로 교육현장에서 활용할 수 있는 방안을 제시하고, 그 효과를 알아보는 것이다. 이를 위해 교사집단과의 협력작업을 통해 기록-자원기반학습 모형을 개발하였다. 그리고 이를 적용한 교수학습안과 일반적인 교수학습안을 개발하여 초등학교 6학년 수업에 적용함으로써 그 효과를 알아보았다. 기록-자원기반학습의 효과에 대한 검증은 SPSS WIN 12.0을 사용하여 t-검증을 실시하였다.
본 연구는 도로의 설계일관성 평가를 위해 지방부 2차로 도로의 평면 곡선부 85백분위 주행속도 예측모형을 기존의 회귀모형에 비해 보다 효율적이고 신뢰성 높은 인공신경 망 이론을 적용하여 개발하였다. 곡선반경, 곡선길이, 교차각, 시거, 차로폭, 차선(안쪽, 바깥쪽)과 같은 기하구조 특성에 의해 속도가 결정된다는 가정하에 30개 조사지점을 통해 얻어진 자료를 모형의 입력층 자료로 이용하였고, 입력층 변수에 따라 네 가지 유형의 신경망 모형을 제시하였다. 신경망 모형 중 다층신경 망 모형을 적용하여 은닉충의 유니트 수, 학습계수, 모멘텀계수, 학습횟수의 변화에 따른 최적 모형 구조를 도출하였다. 신경망 모형의 학습성능을 검증하기 위하여 선정된 30개 조사지점에서 20개 지점을 모형의 학습자료로 나머지 학습되지 않은 10개 지점을 예측자료로 활용하였다. 분석결과, 네 가지 유형의 신경망 모형 중에서 모형 D가 통계적 검증결과 $R^2$값이 85%이며, %RMSE=0.0204로 가장 실제값에 유사한 모형으로 평가되었다.
Purpose: The government around the world is still highlighting the effect of the new variant of Covid-19. The government continues to make efforts to restore the economy through several programs, one of them is National Economic Recovery. This program is expected to increase public and investor confidence in handling Covid-19. This study aims to capture public sentiment on the economic growth rate in Indonesia, especially during the third wave of the omicron variant of the covid-19 virus, that is at the time in the fourth quarter of 2021. Research design, data, and methodology: The approach used in this research is to collect crowdsourcing data from twitter, in the range of 1st to 10th October 2021. The analysis is done by building model using Deep Learning Neural Network method. Results: The result of the sentiment analysis is that most of the tweets have a neutral sentiment on the Economic Growth discussion. Several central figures who discussed were Minister of Coordinating for the Economy of Indonesia, Minister of State-Owned Enterprises. Conclusions: Data from social media can be used by the government to capture public responses, especially public sentiment regarding economic growth. This can be used by policy makers, for example entrepreneurs to anticipate economic movements under certain conditions.
복합질환은 다수의 유전자들이 상호작용하여 유발되는 질병으로서, 여러 유전자들이 관여한다는 복잡성 때문에 전통적인 분석 방법을 적용하는데 한계가 있다. 최근에는 기계학습 기법을 이용한 새로운 분석 방법들이 제안되고 있다. 신경망은 이처럼 복잡한 데이터에서 일정한 패턴을 찾아 이를 분류하는데 적합한 모델이다. 그러나 다량의 데이터가 입력으로 들어오는 경우에 학습에 오랜 시간이 걸리고 패턴을 찾기가 어려워지는 단점이 있다. 본 연구에서는 다량의 SNP 데이터로부터 질병에 연관된 소수의 중요 SNP을 찾기 위한 통계학적인 방법인 집합결합(set association)과 신경망을 결합한 모델을 제시한다. 이 모델을 천식 관련 SNP 데이터에 적용하여 천식 발병 여부를 예측한 결과, 신경망만 사용했을 때보다 실행 시간도 빠르고 예측 정확도도 높았다. 이 모델은 다른 복합질환의 예측에도 효과적으로 사용할 수 있을 것으로 기대한다.
Purpose: This study aims to investigate whether AIS data can be used as a supporting indicator or as an initial signal to describe Indonesia's export-import conditions in real-time. Research design, data, and methodology: This study performs several stages of data selection to obtain indicators from AIS that truly reflect export-import activities in Indonesia. Also, investigate the potential of AIS indicators in producing forecasts of the value and volume of Indonesian export-import using conventional statistical methods and machine learning techniques. Results: The six preprocessing stages defined in this study filtered AIS data from 661.8 million messages to 73.5 million messages. Seven predictors were formed from the selected AIS data. The AIS indicator can be used to provide an initial signal about Indonesia's import-export activities. Each export or import activity has its own predictor. Conventional statistical methods and machine learning techniques have the same ability both in forecasting Indonesia's exports and imports. Conclusions: Big data AIS can be used as a supporting indicator as a signal of the condition of export-import values in Indonesia. The right method of building indicators can make the data valuable for the performance of the forecasting model.
International Journal of Fuzzy Logic and Intelligent Systems
/
제8권2호
/
pp.116-120
/
2008
Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.
International Journal of Internet, Broadcasting and Communication
/
제16권2호
/
pp.267-277
/
2024
This paper explores the use of machine learning in game production to create goal-oriented, realistic animations for skeleton monsters. The purpose of this research is to enhance realism by implementing intelligent movements in monsters within game development. To achieve this, we designed and implemented a learning model for skeleton monsters using reinforcement learning algorithms. During the machine learning process, various reward conditions were established, including the monster's speed, direction, leg movements, and goal contact. The use of configurable joints introduced physical constraints. The experimental method validated performance through seven statistical graphs generated using machine learning methods. The results demonstrated that the developed model allows skeleton monsters to move to their target points efficiently and with natural animation. This paper has implemented a method for creating game monster animations using machine learning, which can be applied in various gaming environments in the future. The year 2024 is expected to bring expanded innovation in the gaming industry. Currently, advancements in technology such as virtual reality, AI, and cloud computing are redefining the sector, providing new experiences and various opportunities. Innovative content optimized for this period is needed to offer new gaming experiences. A high level of interaction and realism, along with the immersion and fun it induces, must be established as the foundation for the environment in which these can be implemented. Recent advancements in AI technology are significantly impacting the gaming industry. By applying many elements necessary for game development, AI can efficiently optimize the game production environment. Through this research, We demonstrate that the application of machine learning to Unity and game engines in game development can contribute to creating more dynamic and realistic game environments. To ensure that VR gaming does not end as a mere craze, we propose new methods in this study to enhance realism and immersion, thereby increasing enjoyment for continuous user engagement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.