• Title/Summary/Keyword: Statistical design of experiments

Search Result 294, Processing Time 0.026 seconds

Deposition and Characterization of Graphene Materials Deposited through Thermal Chemical Vapor Deposition

  • Kwon, Kyoung-Woo;Bae, Seung-Muk;Yeop, Moon-Soo;Kim, Ji-Soo;Ko, Myong-Hee;Jung, Min-Wook;An, Ki-Seok;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.362-362
    • /
    • 2012
  • Graphene-based materials have been gaining the unprecedented academic and industrial applications, due to the unique charge transport as a new kind of 2-dimensional materials. The applications incorporate electronic devices, nonvolatile memories, batteries, chemical sensors, etc. based on the electrical, mechanical, structural, optical, and chemical features newly reported. The current work employs thermal chemical vapor deposition involving H2 and CH4, in order to synthesize the 2-dimensional graphene materials. The qualitative/quantitative characterizations of the synthesized graphene materials are evaluated using Raman spectroscopy and Hall Measurements, In particular, the effect of processing variables is systematically investigated on the formation of graphene materials through statistical design of experiments. The optimized graphene materials will be attempted towards the potential applications to flat-panel displays.

  • PDF

A study on the satisfaction of dental laboratory technology and curriculum demands (치기공학과 교육과정 만족도 및 교육과정에 대한 요구)

  • LEE, Sun-Kyoung;Kwon, Soon-Suk
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.337-345
    • /
    • 2019
  • Purpose: The purpose of this study was to enhance curriculum satisfaction of dental laboratory technology and curriculum demands. Methods: From March 5 to March 31, 2019, a self-written questionnaire was conducted for 195 students from the department of dental laboratory technology at a university in Gangwon-do. The analytical methods used were descriptive statistical analysis, frequency analysis, cross analysis, correlation analysis and reliability analysis. The collected data was used for SPSS 18.0 for Windows statistics program. Results: The demand of the school education includes systematic experiments and demand of practical training, acquisition of professional knowledge, introduction of advanced technology curriculum, reduction of national examination-oriented curriculum, and increased professionalism and professionalism as professional professionals. Investigated by the ethics. In addition, they were strongly aware of the necessity of digital education related to CAD / CAM, and there was a high demand for how to operate programs, scanning and design. Conclusion: The curriculum needs to be reorganized to cultivate dental technicians in a changing era, and in-depth centralized curriculum in fields with high practical needs, as well as vocational and ethical views as professionals.

Corona Cage Simulation on Environmental Characteristics Caused by the Ion flow of Candidated Conductor Bundles for HVDC Overhead Transmission (초고압 직류 가공송전 후보 도체방식의 이온류 환경특성 코로나 케이지 모의시험)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1791-1795
    • /
    • 2007
  • Small ions generated at conductor corona sources remain in the atmosphere until they recombine with ions of opposite polarity, attach to aerosols, or make contact with an object. Ion current density is major factor to design conductor configuration of DC overhead transmission line. Several techniques have been used to measure the ion current of HVDC overhead transmission line. In this study, the ion current density was measured by a plate electrode made of a metal flat board at DC corona cage. The sensitivity of the plate electrode is $0.156uA/m^2/V$. To obtain an useful database on corona discharge, it is necessary to do corona test on several kinds of conductor bundles. Therefore, a number of experiments were conducted on several kinds of conductor bundles. To reliably analyze ion effects, corona cage test data were obtained over a long period of time under various weather conditions and expressed as a statistical distribution. Ion current density distribution in foul weather shows a significant increase in levels over the corresponding fair weather. Based on this results, we evaluated the environmental characteristic caused by ion flow of three candidated conductor bundles.

A Study on Sensitive Cognition for the Physical Factor of Color (색의 물리적 요소에 관한 감성인식 연구)

  • 심준형;이근희;오형술
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.31-39
    • /
    • 1995
  • This study reflected sensitivity cognition in using color and evaluated the performance in task regarded GUI environment. Largely, three experiments were conducted. First, the searching time in text environment was compared with the searching time in color environment. Second, to know relationship of hue, saturation, lightness which are factors of color, and searching time, the searching time was measured using two-way ANOVA with interaction with three independent variables: hue, saturation, and distance. Third, sensitivity cognition about color was investigated and the performance of searching task was analyzed in the environment designed by color regarded sensitivity cognition. According to statistical results, the average searching time was decreased about 50.31% in color environment. The searching time was significant among the difference of hue and saturation. For the factor of color, the more the ratio of green and red was increased, the more searching time was decreased. The more the ratio of gray was increased, the more searching time was increased. And the searching time was developed in the environment designed by color regarded sensitivity. The purpose of this study is the presentation of sensitivity realization method and verification in the reflection and application of sensitivity to the industrial environment and design.

  • PDF

Deposition Optimization and Property Characterization of Copper-Oxide Thin Films Prepared by Reactive Sputtering

  • You, Yil-Hwan;Bae, Seung-Muk;Kim, Young-Hwan;Hwang, Jinha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.27-31
    • /
    • 2013
  • Copper-oxide (CuO) thin films were prepared by reactive sputtering of Cu onto Si wafers and characterized using a statistical design of experiments approach. The most significant factor in controlling the electrical resistivity and deposition rate was determined to be the $O_2$ fraction. The deposited CuO thin films were characterized in terms of their physical and chemical properties, using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray diffraction (XRD), and 4-point resistance measurements. The deposited copper thin films were characterized by XPS and XRD analyses to consist of $Cu^{2+}$. The CuO thin films of highest resistivity exhibited superior rectifying responses with regard to n-type Si wafers, with a current ratio of $3.8{\times}10^3$. These superior responses are believed to be associated with the formation of a charge-depletion region originating from the p-type CuO and n-type Si materials.

Fabrication of Phase Plate to Simulate Turbulence Effects on an Optical Imaging System in Strong Atmospheric Conditions

  • Han-Gyol Oh;Pilseong Kang;Jaehyun Lee;Hyug-Gyo Rhee;Young-Sik Ghim;Jun Ho Lee
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.259-269
    • /
    • 2024
  • Optical imaging systems that operate through atmospheric pathways often suffer from image degradation, mainly caused by the distortion of light waves due to turbulence in the atmosphere. Adaptive optics technology can be used to correct the image distortion caused by atmospheric disturbances. However, there are challenges in conducting experiments with strong atmospheric conditions. An optical phase plate (OPP) is a device that can simulate real atmospheric conditions in a lab setting. We suggest a novel two-step process to fabricate an OPP capable of simulating the effects of atmospheric turbulence. The proposed fabrication method simplifies the process by eliminating additional activities such as phase-screen design and phase simulation. This enables an efficient and economical fabrication of the OPP. We conducted our analysis using the statistical fluctuations of the refractive index and applied modal expansion using Kolmogorov's theory. The experiment aims to fabricate an OPP with parameters D/r0 ≈ 30 and r0 ≈ 5 cm. The objective is defined with the strong atmospheric conditions. Finally, we have fabricated an OPP that satisfied the desired objectives. The OPP closely simulate turbulence to real atmospheric conditions.

Statistical Design of X Control Chart with Improved 2-of-3 Main and Supplementary Runs Rules (개선된 3 중 2 주 및 보조 런 규칙을 가진 X관리도의 통계적 설계)

  • Park, Jin-Young;Seo, Sun-Keun
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.4
    • /
    • pp.467-480
    • /
    • 2012
  • Purpose: This paper introduces new 2-of-3 main and supplementary runs rules to increase the performance of the classical $\bar{X}$ control chart for detecting small process shifts. Methods: The proposed runs rules are compared with other competitive runs rules by numerical experiments. Nonlinear optimization problem to minimize the out-of-control ARL at a specified shift of process mean for determining action and warning limits at a time is formulated and a procedure to find two limits is illustrated with a numerical example. Results: The proposed 2-of-3 main and supplementary runs rules demonstrate an improved performance over other runs rules in detecting a sudden shift of process mean by simultaneous changes of mean and standard deviation. Conclusion: To increase the performance in the detection of small to moderate shifts, the proposed runs rules will be used with $\bar{X}$ control charts.

Modeling of PECVD Oxide Film Properties Using Neural Networks (신경회로망을 이용한 PECVD 산화막의 특성 모형화)

  • Lee, Eun-Jin;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.831-836
    • /
    • 2010
  • In this paper, Plasma Enhanced Chemical Vapor Deposition (PECVD) $SiO_2$ film properties are modeled using statistical analysis and neural networks. For systemic analysis, Box-Behnken's 3 factor design of experiments (DOE) with response surface method are used. For characterization, deposited film thickness and film stress are considered as film properties and three process input factors including plasma RF power, flow rate of $N_2O$ gas, and flow rate of 5% $SiH_4$ gas contained at $N_2$ gas are considered for modeling. For film thickness characterization, regression based model showed only 0.71% of root mean squared (RMS) error. Also, for film stress model case, both regression model and neural prediction model showed acceptable RMS error. For sensitivity analysis, compare to conventional fixed mid point based analysis, proposed sensitivity analysis for entire range of interest support more process information to optimize process recipes to satisfy specific film characteristic requirements.

Optimization of Welding Parameters for Resistance Spot Welding of TRIP Steel using Response Surface Methodology (저항 점 용접에서 반응표면분석법을 이용한 고장력 TRIP강의 최적 용접 조건 설정에 관한 연구)

  • 박현성;김태형;이세헌
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.76-81
    • /
    • 2003
  • Due to the environmental problem, automotive companies are trying to reduce the weight of car body. Therefore, WP(Transformation Induced Plasticity) steels, which are hish strength and ductility have been developed. The application of TRIP steel to the members has been reported to increase the energy absorption capability. Welding process is a complex process; therefore deciding the optimal welding conditions is an effective method on the basis of the experimental data. However, using a trial-and-error method from the beginning in such a wide area, in order to decide the optimal conditions requires too many numbers of experiments. To overcome these problems and to decide the optimal conditions, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are for the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The introduced method was applied to the resistance spot welding process of the TRIP steel and the welding parameters were optimized. (Received December 6, 2002)

Simulation and Model Validation of a Pneumatic Conveying Drying for Wood Dust Particles

  • Bhattarai, Sujala;Kim, Dae-Hyun;Oh, Jae-Heun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.82-89
    • /
    • 2012
  • Purpose: The simulation model of a pneumatic conveying drying (PCD) for sawdust was developed and verified with the experiments. Method: The thermal behavior and mass transfer of a PCD were modeled and investigated by comparing the experimental results given by a reference (Kamei et al. 1952) to validate the model. Momentum, energy and mass balance, one dimensional first order ordinary differential equations, were coded and solved into Matlab V. 7.1.0 (2009). Results: The simulation results showed that the moisture content reduced from 194% to 40% (dry basis), air temperature decreased from $512^{\circ}C$ to $128^{\circ}C$ with the particle residence time of 0.7 seconds. The statistical indicators, root mean square error and R-squared, were calculated to be 0.079, and 0.998, respectively, between the measured and predicted values of moisture content. The relative error between the measured and predicted values of the final pressured drop, air temperature, and air velocity were only 8.96%, 0.39% and 1.05% respectively. Conclusions: The predicted moisture content, final temperature, and pressure drop values were in good agreement with the experimental results. The developed model can be used for design and estimation of PCD system for drying of wood dust particles.