Communications for Statistical Applications and Methods
/
제16권1호
/
pp.1-11
/
2009
마이크로데이터를 이용자에게 제공하면 레코드 단위의 데이터가 노출되고 응답자의 정보 노출위험이 불가피하다. 통계적 노출조절기법은 통계데이터 제공시 노출위험을 줄이면서 데이터 유용성을 높이기 위한 통계적 기법이다. 본 논문에서는 노출과 노출위험, 그리고 통계적 노출조절기법을 고찰하였고 데이터 유용성과 연관하여 노출조절기법 선택 전략을 살펴보았으며, '위험-유용성 경계 지도' 방법의 예를 알아보았다. 마지막으로 마이크로데이터를 이용자에게 제공할 때 단계별로 검토할 사항을 알아보았다.
Successful implementation of statistical process control techniques requires for operational definitions and precise measurements. Nevertheless, very often analysts can dispose of process data available only by linguistic terms, that would be a waste to neglect just because of their intrinsic vagueness. Thus a hybrid approach, which integrates fuzzy set theory and common statistical tools, sounds useful in order to improve effectiveness of statistical process control in such a case. In this work, a fuzzy approach is adopted to manage linguistic information, and the use of a Chi-squared control chart is proposed to monitor process performance.
Short runs where it is neither possible nor practical to obtain sufficient subgroups to estimate accurately the control limit are common in modem business environments. In this study, the standardized control chart, Hillier's exact method, Q chart, EWMA(Exponentially Weighted Moving Average) chart for Q statistics and EWMA chart for mean and absolute deviation among many SPC(Statistical Process Control) techniques for short runs have been reviewed and advantages and disadvantages of these techniques are discussed. The simulation experiments to compare performances of these variable charts for process mean and variations are conducted for combination of subgroup size, scale and timing of shifts of process mean an/or standard deviation. Based upon simulation results, some guidelines for practitioners to choose short run SPC techniques are recommended.
In this paper, we characterize the smoothest density with prescribed moments. Hong and Kim(1995) proved the existence and uniqueness of such as density. we introduce the general optimal control problem and prove some theorems on the characterization of the minimizer using the optimal control problem techniques.
Statistical process control techniques have been greatly implemented in industries for improving product quality and saving production costs. As a primary tool among these techniques, control charts are widely used to detect the occurrence of assignable causes. In most works on the control charts it considered the problem of monitoring the mean and variance, and the quality characteristic of interest is normally distributed. In some situations monitoring of the minimum and maximum values is more important and the quality characteristic of interest is the Weibull distribution rather than a normal distribution. In this paper, we consider the statistical design of minimum and maximum control charts when the distribution of the quality characteristic of interest is Weibull. The proposed minimum and maximum control charts are applied to the wind data. The results of the application show that the proposed method is more effective than traditional methods.
Nowaday manufacture technology and manufacture environment are changing rapidly. By development of computer and enlargement of technique, most of manufacture field are computerized. It is measured automatically do much quality characteristics thereby and great many data happen in a day. corporations is important if have gotten fast information that are useful from wide data to go first in international competition according to these change. Statistical process control(SPC) techniques are used as a problem solution tool at manufacturing process until present. However, this statistical methods is not applied more extensively because have much restrictions in realistic problem. In this paper, wish to develop more realistic and scientific new statistical design techniques doing to integrate data mining(DM) and statistical methods by the alternative to cope these problem. First step selects significant factor using DM techniques from datas of manufacturing process including much factors and second step wish to find optimum of process after get the estimated response function through response surf ace methodology(RSM) that is statistical techniques.
Communications for Statistical Applications and Methods
/
제7권3호
/
pp.773-788
/
2000
Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for processes quality improvement. SPC reduces process variability by detecting and eliminating special causes of process variation. while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been needs for a process control proceduce which combines the tow strategies. This paper considers a combined scheme which simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process model under consideration is an integrated moving average(IMA) process with a step shift. The EPC part of the scheme adjusts the process back to target at every fixed monitoring intervals, which is referred to a repeated adjustment scheme. The SPC part of the scheme uses an exponentially weighted moving average(EWMA) of observed deviation from target to detect special causes. A Markov chain model is developed to relate the scheme's expected cost per unit time to the design parameters of he combined control scheme. The expected cost per unit time is composed of off-target cost, adjustment cost, monitoring cost, and false alarm cost.
These days manufacture technology and manufacture environment are changing rapidly. By development of computer and enlargement of technique, most of manufacture field are computerized. In order to win international competition, it is important for companies how fast get the useful information from vast data. Statistical process control(SPC) techniques have been used as a problem solution tool at manufacturing process until present. However, these statistical methods are not applied more extensively because it has much restrictions in realistic problems. These statistical techniques have lots of problems when much data and factors are analyzed. In this paper, we proposed more practical and efficient a new statistical design technique which integrated data mining (DM) and statistical methods as alternative of problems. First step is selecting significant factor using DM feature selection algorithm from data of manufacturing process including many factors. Second step is finding optimum of process after estimating response function through response surface methodology(RSM) that is a statistical techniques
The most important factors for a product to survive in the market are cost and quality. In recent years, quality proceeds to cost. There are many techniques of use to improve the quality of a product. One of the techniques is applying statistical methods (especially Taguchi method) to real operational conditions for a continuous manufacturing process in P company. There are 91 factors to control in the process. So, we predetermined 7 main effect factors and 6 interactive effect factors by statistical methods and advices of engineers. With these 13 factors, we determined the optimal level of operations for the process.
Engineering process control (EPC) is one of the techniques very widely used in process. EPC is based on control theory which aims at keeping the process on target. Statistical process control (SPC), also known as statistical process monitoring. The main purpose of SPC is to look for assignable causes (variability) in the process data. The combined SPC/EPC scheme is gaining recognition in the process industries where the process frequently experiences a drifting mean. This paper aims to study the difference between SPC and EPC in simple terms and presents a case study that demonstrates successful integration of SPC and EPC for a product in drifting industry. Statistical process control (SPC) monitoring of the special causes of a process, along with engineering feedback control such as proportional-integral-derivative (PID) control, is a major tool for on-line quality improvement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.