• Title/Summary/Keyword: Statistical Learning Model

Search Result 536, Processing Time 0.025 seconds

Research on Financial Distress Prediction Model of Chinese Cultural Industry Enterprises Based on Machine Learning and Traditional Statistical (전통적인 통계와 기계학습 기반 중국 문화산업 기업의 재무적 곤경 예측모형 연구)

  • Yuan, Tao;Wang, Kun;Luan, Xi;Bae, Ki-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.545-558
    • /
    • 2022
  • The purpose of this study is to explore a prediction model for accurately predicting Financial Difficulties of Chinese Cultural Industry Enterprises through Traditional Statistics and Machine Learning. To construct the prediction model, the data of 128 listed Cultural Industry Enterprises in China are used. On the basis of data groups composed of 25 explanatory variables, prediction models using Traditional Statistical such as Discriminant Analysis and logistic as well as Machine Learning such as SVM, Decision Tree and Random Forest were constructed, and Python software was used to evaluate the performance of each model. The results show that the Random Forest model has the best prediction performance, with an accuracy of 95%. The SVM model was followed with 93% accuracy. The Decision Tree model was followed with 92% accuracy.The Discriminant Analysis model was followed with 89% accuracy. The model with the lowest prediction effect was the Logistic model with an accuracy of 88%. This shows that Machine Learning model can achieve better prediction effect than Traditional Statistical model when predicting financial distress of Chinese cultural industry enterprises.

Effects of Blended-TBL on Students' Self-Regulated Learning

  • PARK, Eunsook
    • Educational Technology International
    • /
    • v.10 no.1
    • /
    • pp.137-155
    • /
    • 2009
  • The purpose of this research is to develop Blended-TBL(Team Based Learning) model that emphasizes the active participation and teamwork of students in on-off blended learning environment, and apply it into the college course and explore whether self-regulated learning between one group pretest and posttest is different. For this, this research investigated the concept and the characteristics of Team Based Learning, and developed the Blended-TBL Model to apply it into the college course, and finally prove effects of Blended-TBL model on self-regulated learning using Motivated Strategies for Learning Questionnaire (MSLQ). The participants in this study were 57 college students. They participated in on-off blended-TBL course for 15weeks. Participants followed the content grounded and the problem solving steps in collaborative team-based learning. This research practiced a quantitative research to find out the statistical difference of the self-regulated learning between pretest and posttest using SPSS. The result revealed that Blended-TBL students improved self-regulated learning including motivation, cognitive, metacognitive, and resource management. Based on this result, this research discussed the effects of Blended-TBL on Self-Regulated Learning and suggested the further study.

Review of statistical methods for survival analysis using genomic data

  • Lee, Seungyeoun;Lim, Heeju
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.41.1-41.12
    • /
    • 2019
  • Survival analysis mainly deals with the time to event, including death, onset of disease, and bankruptcy. The common characteristic of survival analysis is that it contains "censored" data, in which the time to event cannot be completely observed, but instead represents the lower bound of the time to event. Only the occurrence of either time to event or censoring time is observed. Many traditional statistical methods have been effectively used for analyzing survival data with censored observations. However, with the development of high-throughput technologies for producing "omics" data, more advanced statistical methods, such as regularization, should be required to construct the predictive survival model with high-dimensional genomic data. Furthermore, machine learning approaches have been adapted for survival analysis, to fit nonlinear and complex interaction effects between predictors, and achieve more accurate prediction of individual survival probability. Presently, since most clinicians and medical researchers can easily assess statistical programs for analyzing survival data, a review article is helpful for understanding statistical methods used in survival analysis. We review traditional survival methods and regularization methods, with various penalty functions, for the analysis of high-dimensional genomics, and describe machine learning techniques that have been adapted to survival analysis.

Prediction of the Major Factors for the Analysis of the Erosion Effect on Atomic Oxygen in LEO Satellite Using a Machine Learning Method (LSTM)

  • Kim, You Gwang;Park, Eung Sik;Kim, Byung Chun;Lee, Suk Hoon;Lee, Seo Hyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.50-56
    • /
    • 2020
  • In this study, we investigated whether long short-term memory (LSTM) can be used in the future to predict F10.7 index data; the F10.7 index is a space environment factor affecting atomic oxygen erosion. Based on this, we compared the prediction performances of LSTM, the Autoregressive integrated moving average (ARIMA) model (which is a traditional statistical prediction model), and the similar pattern searching method used for long-term prediction. The LSTM model yielded superior results compared to the other techniques in the prediction period starting from the max/min points, but presented inferior results in the prediction period including the inflection points. It was found that efficient learning was not achieved, owing to the lack of currently available learning data in the prediction period including the maximum points. To overcome this, we proposed a method to increase the size of the learning samples using the sunspot data and to upgrade the LSTM model.

Seven Facets of Learning Agility in Higher Education for Future Society

  • SUNG, Eunmo
    • Educational Technology International
    • /
    • v.22 no.2
    • /
    • pp.169-197
    • /
    • 2021
  • Learning agility as high potentials is drawing attention as a competency for leading an uncertain future society. The present study aims to determine the factors of learning agility in higher education context for future society. To address this goal, Major factors related to learning agility were derived through literature review and statistically verified. For statistical analysis, the nationwide data were collected from 1,000 undergraduate students in South Korea by National Youth Policy Institute. The participants asked to answer 29 items of learning agility questionnaires (LAQ). The collected data were analyzed by descriptive statistical analysis, exploratory factor analysis, and confirmatory factor analysis. As a result, learning agility items were verified normality and reliability. Learning agility was identified seven factors; challenging mind, learning responsibility, reflecting experience, intellectual curiosity, systemic thinking, change adaptability, and logical thinking. Also, the structural model fit of the seven factors of learning agility was also confirmed to be good. Based on the findings of the present study, empirical, theoretical, and practical contributions were presented, and suggestions for further research were proposed in detail.

Is it possible to forecast KOSPI direction using deep learning methods?

  • Choi, Songa;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.329-338
    • /
    • 2021
  • Deep learning methods have been developed, used in various fields, and they have shown outstanding performances in many cases. Many studies predicted a daily stock return, a classic example of time-series data, using deep learning methods. We also tried to apply deep learning methods to Korea's stock market data. We used Korea's stock market index (KOSPI) and several individual stocks to forecast daily returns and directions. We compared several deep learning models with other machine learning methods, including random forest and XGBoost. In regression, long short term memory (LSTM) and gated recurrent unit (GRU) models are better than other prediction models. For the classification applications, there is no clear winner. However, even the best deep learning models cannot predict significantly better than the simple base model. We believe that it is challenging to predict daily stock return data even if we use the latest deep learning methods.

Development of Machine Learning Model to Predict Hydrogen Maser Holdover Time (수소 메이저 홀드오버 시간예측을 위한 머신러닝 모델 개발)

  • Sang Jun Kim;Young Kyu Lee;Joon Hyo Rhee;Juhyun Lee;Gyeong Won Choi;Ju-Ik Oh;Donghui Yu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.111-115
    • /
    • 2024
  • This study builds a machine learning model optimized for clocks among various techniques in the field of artificial intelligence and applies it to clock stabilization or synchronization technology based on atomic clock noise characteristics. In addition, the possibility of providing stable source clock data is confirmed through the characteristics of machine learning predicted values during holdover of atomic clocks. The proposed machine learning model is evaluated by comparing its performance with the AutoRegressive Integrated Moving Average (ARIMA) model, an existing statistical clock prediction model. From the results of the analysis, the prediction model proposed in this study (MSE: 9.47476) has a lower MSE value than the ARIMA model (MSE: 221.2622), which means that it provides more accurate predictions. The prediction accuracy is based on understanding the complex nature of data that changes over time and how well the model reflects this. The application of a machine learning prediction model can be seen as a way to overcome the limitations of the statistical-based ARIMA model in time series prediction and achieve improved prediction performance.

Comparative analysis of model performance for predicting the customer of cafeteria using unstructured data

  • Seungsik Kim;Nami Gu;Jeongin Moon;Keunwook Kim;Yeongeun Hwang;Kyeongjun Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.5
    • /
    • pp.485-499
    • /
    • 2023
  • This study aimed to predict the number of meals served in a group cafeteria using machine learning methodology. Features of the menu were created through the Word2Vec methodology and clustering, and a stacking ensemble model was constructed using Random Forest, Gradient Boosting, and CatBoost as sub-models. Results showed that CatBoost had the best performance with the ensemble model showing an 8% improvement in performance. The study also found that the date variable had the greatest influence on the number of diners in a cafeteria, followed by menu characteristics and other variables. The implications of the study include the potential for machine learning methodology to improve predictive performance and reduce food waste, as well as the removal of subjective elements in menu classification. Limitations of the research include limited data cases and a weak model structure when new menus or foreign words are not included in the learning data. Future studies should aim to address these limitations.

EPS Gesture Signal Recognition using Deep Learning Model (심층 학습 모델을 이용한 EPS 동작 신호의 인식)

  • Lee, Yu ra;Kim, Soo Hyung;Kim, Young Chul;Na, In Seop
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.35-41
    • /
    • 2016
  • In this paper, we propose hand-gesture signal recognition based on EPS(Electronic Potential Sensor) using Deep learning model. Extracted signals which from Electronic field based sensor, EPS have much of the noise, so it must remove in pre-processing. After the noise are removed with filter using frequency feature, the signals are reconstructed with dimensional transformation to overcome limit which have just one-dimension feature with voltage value for using convolution operation. Then, the reconstructed signal data is finally classified and recognized using multiple learning layers model based on deep learning. Since the statistical model based on probability is sensitive to initial parameters, the result can change after training in modeling phase. Deep learning model can overcome this problem because of several layers in training phase. In experiment, we used two different deep learning structures, Convolutional neural networks and Recurrent Neural Network and compared with statistical model algorithm with four kinds of gestures. The recognition result of method using convolutional neural network is better than other algorithms in EPS gesture signal recognition.

Statistical Modeling of Learning Curves with Binary Response Data (이항 반응 자료에 대한 학습곡선의 모형화)

  • Lee, Seul-Ji;Park, Man-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.433-450
    • /
    • 2012
  • As a worker performs a certain operation repeatedly, he tends to become familiar with the job and complete it in a very short time. That means that the efficiency is improved due to his accumulated knowledge, experience and skill in regards to the operation. Investing time in an output is reduced by repeating any operation. This phenomenon is referred to as the learning curve effect. A learning curve is a graphical representation of the changing rate of learning. According to previous literature, learning curve effects are determined by subjective pre-assigned factors. In this study, we propose a new statistical model to clarify the learning curve effect by means of a basic cumulative distribution function. This work mainly focuses on the statistical modeling of binary data. We employ the Newton-Raphson method for the estimation and Delta method for the construction of confidence intervals. We also perform a real data analysis.