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Abstract  

 In this study, we investigated whether long short-term memory (LSTM) can be used in the future to predict F10.7 
index data; the F10.7 index is a space environment factor affecting atomic oxygen erosion. Based on this, we compared 
the prediction performances of LSTM, the Autoregressive integrated moving average (ARIMA) model (which is a 
traditional statistical prediction model), and the similar pattern searching method used for long-term prediction. The 
LSTM model yielded superior results compared to the other techniques in the prediction period starting from the 
max/min points, but presented inferior results in the prediction period including the inflection points. It was found that 
efficient learning was not achieved, owing to the lack of currently available learning data in the prediction period 
including the maximum points. To overcome this, we proposed a method to increase the size of the learning samples 
using the sunspot data and to upgrade the LSTM model. 
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Recently, convergence research on technologies utilizing 
artificial intelligence (AI) and big data in various fields has 
drawn significant attention. In relation to this trend of 
convergence research, there has been an increasing interest in 
the optimized design of low-Earth-orbit (LEO) satellites. 
Moreover, there was a recent report of a study using statistical 
techniques to predict the atomic oxygen erosion in satellite 
coating materials considering the effects of the space 
environment under the worst-scenario condition [1]. In this 
study, among the major factors related to the space 
environment affecting the erosion of the coating materials of 
LEO satellites by atomic oxygen, the index data of F10.7, 
which is a solar radio flux, were predicted. This was 
conducted by applying mathematical and statistical techniques 
used for big data analysis and machine learning. Based on the 
results, we aim to present a methodology that can be useful for 
determining the coating material thickness in satellite design 
in the future. 

An LEO satellite is designed to perform its mission even 
when exposed to an unfavorable space environment, which is 
very different from the ground condition. Among the design 

considerations, the erosion of polymer materials by the atomic 
oxygen species distributed in the low orbits of the Earth is a 
phenomenon not observed on the ground. These atomic 
oxygen species collide with the exterior of a satellite at a 
speed of approximately 7.8 km/s, which corresponds to the 
orbital speed of a low-orbiting satellite, resulting in the 
problem of degradation of the properties of the coating 
material [2]. The coating material of satellite parts is designed 
considering the various effects of the space environment; 
however, the design of the protection against the atomic 
oxygen erosion employs a robust method [1] assuming the 
worst-case scenario. In this study, we aimed to present a basis 
for more realistic prediction-oriented design based on existing 
measurement data by mathematical/statistical techniques. 

 

 

Research on atomic oxygen erosion-related detailed 
technologies and prediction techniques has not been 
extensively reported or published worldwide, and even the 
advanced countries in the field of space sciences do not share 
technical details. Therefore, satellite designs in Korea, until 
recently, were based on a robust design that simply assumed 
the worst-case scenario. In our previous study [1], we aimed to 
establish an F10.7 prediction model by applying various 
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mathematical and statistical techniques as a manner of trial 
and error, and focused on techniques producing small errors. 
In this study, our objective was to predict highly detailed 
F10.7 data during the mission period. The F10.7 index is a 
necessary input variable for the calculation of atomic oxygen 
erosion using long short-term memory (LSTM) among the 
machine learning techniques that have rapidly developed in 
recent years. This is based on the analysis of the F10.7 data 
measured and published internationally. 

This study focused on the prediction of F10.7 data; F10.7 is 
an important space environment factor in the calculation of 
atomic oxygen erosion during a satellite mission. In the future, 
we aim to further develop these mathematical and statistical 
prediction models, so that the results can actually be used for 
the calculation of atomic oxygen erosion of the satellite 
materials. However, such a research is considered to require 
additional experiments and cost as well as significant time 
consumption. Therefore, to organize the research outputs in a 
stepwise manner, first, we investigated the F10.7 data 
prediction method. 
 

The F10.7 and Ap indices, which are important factors in the 
space environment for the prediction of atomic oxygen erosion, 
serve as indicators related to solar activity and are affected by 
the solar cycle or solar magnetic activity cycle. Solar magnetic 
activity has been reported to change with a cycle of 
approximately 11.1 years. This change depends on the solar 
activities (including changes in the level of solar radiation and 
material ejection from the sun) and variation in the solar 
appearance (such as changes in the number of sunspots and 
size, flares, and other signs). These changes in the solar 
magnetic activities affect the atmosphere and the surface of 
the earth periodically or aperiodically.  

 

 

Fig. 1 Forecasted Solar Cycle 25 (NOAA/NASA) [3] 
 
The data released on December 9, 2019 by the Space 

Weather Prediction Center jointly hosted by National Oceanic 
and Atmospheric Administration(NOAA)/National 
Aeronautics and Space Administration(NASA) is shown in 
Fig. 1. According to it, Solar Cycle 25 has the highest point in 
July 2025 (± 8 months) and the lowest point in April 2020 (± 6 
months), and the expected highest sunspot number (smoothed 
sunspot number (SSN)) is 115, which is expected to be similar 
to Solar Cycle 24 [3]. 

The prediction of the F10.7 value is necessary for the 
estimation of atomic oxygen erosion during the planned 
mission period of a satellite from the point of its launch, and 
the data analysis in a previous study [1] reported the 
periodicity and pattern in the data. Therefore, optimization of 
the design of the polymer materials considering atomic oxygen 
erosion was considered necessary. 
 

 As is known from numerous space environment studies, 
solar activity is an important factor in the space environment; 
it has the largest effect on the atomic oxygen erosion of LEO 
satellite coating materials. The indices representing these solar 
activities are expressed in a variety of forms in each field. 
However, among the indicators related to solar activity, the 
input variables used in the prediction calculation of the atomic 
oxygen erosion of an LEO are the solar radio flux (F10.7) and 
geomagnetic index (Ap) values provided by the SPace 
ENVironment Information System (SPENVIS) of the 
European Space Agency (ESA) [2]. 

The F10.7 index is known to be the most classical value in 
the methods for directly recording solar activity, besides those 
related to sunspots. F10.7 is a measure of the solar flux per 
unit frequency at a wavelength of 10.7 cm near the high point 
of the observed solar radiation. It is represented as the size of 
the 2,800-MHZ (10.7-cm) radio flux measured by day per 
solar flux unit (SFU) (1 × 10-22 W m-2 Hz-1). 

The Ap index is a measure of the mean daily level of the 
geomagnetic activity on the Earth during the corresponding 
one day of universal time (UT). Moreover, the values 
measured at various locations worldwide, for the change in the 
magnetic field of the Earth due to the current flowing through 
the ionosphere of the Earth, are determined at the 
GeoForschungsZentrum (GFZ) Institute in Potsdam, Germany. 
Furthermore, they are presented on behalf of the International 
Service of Geomagnetic Indices (ISGI) of the International 
Association of Geomagnetism and Aeronomy (IAGA).  

In this study, as described above, from the two important 
indices affecting the atomic oxygen erosion of a LEO satellite 
coating material, a prediction of the F10.7 index with 
periodicity was performed. Compared to the F10.7 index, the 
Ap index is known to have a weak periodicity or regularity in 
the pattern (the correlation coefficient between the Ap Index 
and SSN, which is a representative index of the solar activity, 
is reported as 0.32.). Moreover, because this change occurs 
irregularly, this index shows no difference depending on the 
technique used. Therefore, in this study, improving the 
existing prediction method of the Ap index was not considered. 
 

 Assuming that the mission period of a satellite is 5 years 
and the preparation period is 2 years, the period for the next 7 
years from the present should be predicted considering these 
periods. The actual data available under these assumptions are 
up to 7 years before the launch date. Therefore, this study 
predicted F10.7 over the next 7 years from a planned satellite 
launch time, including a preparation period of 2 years and a 
mission period of 5 years. Moreover, it was assumed that 
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among the currently collected data, there are no data for the 
recent 7 years, and the prediction was performed under this 
assumption. Following the prediction, the results were 
compared with real data, and the prediction performance was 
evaluated.  

With regard to these assumptions, the mean design period of 
the satellites developed in Korea is typically approximately 5 
years; therefore, adding 5 years of the mission period will 
require more than 10 years in total. Despite this, the satellite 
development period and mission periods were set as 2 years 
and 5 years, respectively. This was because the critical design 
review (CDR) of the Korea Multipurpose Satellite 
(KOMPSAT), which is a type of LEO satellite, was conducted 
2–2.5 years before its launch. The final details of the design 
are confirmed at this CDR stage; therefore, the development 
period was set as 2 years. As for the mission period, those of 
the KOMPSAT or the next-generation middle-sized satellites 
are typically set as 3.5–5 years. Therefore, considering a 
buffer time of margin, it was considered that the prediction of 
the atomic oxygen erosion should be reflected in the design at 
least 7 years before the actual design work. Based on the start 
time of an actual satellite design, the design period of 2 years 
is not realistic. However, because the Korea Aerospace 
Research Institute (KARI) has numerous design heritages of 
the KOMPSAT program, the maximum period of the 
prediction was set as 7 years, to improve the prediction 
accuracy of the atomic oxygen erosion. (Specifically, it is 
empirically recognized that predicting for a period of 10 years 
or more is to some extent less accurate.) 
 Because the collected F10.7 data [4] were for the period from 
March 1947 to July 2019, the data used for the prediction were 
the data excluding those from the most recent time point to 
July 2012, excluding the period of the past 7 years. Using this, 
we predicted the F10.7 values for the next 7 years, and 
compared the predicted values with the actual F10.7 values. 
The evaluation of the predicted value was performed using a 
five-year prediction error from August 2014 to July 2019, 
assuming that the period was the time for the actual mission 
period, excluding the preparation period. 
 

 

Fig. 2 F10.7 Monthly Averaged Data 

 

Concurrently, when analyzing the past observation data 
presented in Fig. 2, the forecast period, from August 2014 to 

July 2019, appears as a descending period from maximum to 
minimum in the cycle of the F10.7 index. To consider the 
effect of the period characteristics in a cyclic process, the 
predictions at the point with the increase from the minimum to 
the maximum and the midpoint of the descending from the 
maximum to minimum were added to compare the results. 
Based on the graph of the F10.7 index, the period with the 
increase from the minimum to the maximum was from August 
2008 to July 2013. Moreover, the period that starts from the 
midpoint of the rise from the minimum to the maximum, 
which includes the maximum point, was August 2011 to July 
2016, and the starting points of the prediction are displayed in 
Fig. 2, where they are denoted as (1), (2), and (3) 
 

 

 In this study, we applied the LSTM technique, which has 
been recently reported to present good performance as a 
machine learning technique for time series data. The results 
were compared to those of the autoregressive integrated 
moving average model (ARIMA), which is a representative 
statistical methodology for processing time series data. 
Another comparison was performed with the results of a 
similar pattern searching method proposed in a previous study. 
 As a parameter for comparing predictive performance, a 
prediction error, which is the difference between the predicted 
and actually measured and internationally published F10.7 
values, was used. As for the calculation of the prediction error, 
the root mean squared error (RMSE) and the mean absolute 
percentage error (MAPE) were used. The RMSE was obtained 
by averaging the square of the difference between the 
predicted and actual measured value. The MAPE was obtained 
by taking the mean value of the calculation of the percentage 
of the absolute value of the difference between the predicted 
and actual measured values divided by the actual value. The 
calculation formulas are given below. 
 

RMSE =  √∑ (𝑦̂𝑦𝑡𝑡+ℎ−𝑦𝑦𝑡𝑡+ℎ)2𝑛𝑛
ℎ=1

𝑛𝑛   and  (1) 

 

MAPE =  
∑ (|𝑦̂𝑦𝑡𝑡+ℎ−𝑦𝑦𝑡𝑡+ℎ|

𝑦𝑦𝑡𝑡+ℎ
×100)𝑛𝑛

ℎ=1

𝑛𝑛 ,  (2) 

 

where 

𝑦𝑦𝑡𝑡+ℎ : Prediction value 

𝑦𝑦𝑡𝑡+ℎ : Observation value 

n : Number of samples 
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It can be inferred that the smaller the RMSE and MAPE, the 
better the performance of prediction. The prediction error was 
calculated from the three prediction target periods, which were 
from August 2014 to July 2019, August 2011 to July 2016, 
and August 2008 to August 2013. For these periods, the 
predicted and actual measured values of the F10.7 index were 
used for the calculation of the error. 

 

LSTM is a model proposed by Hochreiter et al. (1997). It is 
a machine learning algorithm appropriate for processing 
sequential data, such as time series data, and has recently 
presented good performance in various fields related to big 
data. 

 

 

Fig. 3 LSTM [6] 

 

 To be more specific regarding the description, LSTM is a 
type of artificial neural network with a cyclic structure, and it 
was designed to overcome the vanishing gradient problem, for 
which recurrent neural networks (RNNs) become gradually 
less effective for adjustment as the steps progress [5]. As 
shown in Fig. 3, the key concept is a network structure 
including three gates: a forget gate that maintains the 
appropriate level of past information and then completely 
forgets it, an input gate that controls the memory level of the 
current information, and an output gate that produces the final 
result. Through the forget gate, data and information from the 
past are appropriately preserved in the network, so that they 
continue to have an effect on prediction of the future values. 
Owing to this structural advantage, LSTM is a very 
extensively used deep learning method for time series 
prediction. 

In this study, as displayed in Fig. 4, a model was established 
to minimize the error in predicting the F10.7 data for the next 
month from the observations of 30 consecutive months, i.e., 
the 31st month. This method implemented trial and error 
processes of 15 months, 30 months, and 45 months, 
minimizing the error to derive the optimum value. Therefore, 
from this model, the August 2012 value was predicted from 

the observations from February 2010 to July 2012. Moreover, 
using the observed values from March 2010 to July 2012 and 
the predicted value of August 2012 in the previous step, the 
value of the next month, September 2012, was predicted. This 
method was applied consecutively to calculate the prediction 
values up to July 2019 

 

 
Fig. 4 LSTM Prediction by Trial and Error 

 

Also, before the learning process began, as for the hyper-
parameter values used, 9 learning rates were set between the 
values from 0.1 to 0.001. The early stopping rule was applied 
in which the learning rate was lowered whenever the learning 
was stopped and for each learning rate, an epoch of 2000 times 
was set, and when there was no progress, it moved on to the 
next step. 

 

ARIMA a most widely used methodology when analyzing 
time series data and making predictions using models [7].  

 

 

Fig. 5 ARIMA Equation [7] 

 
The essence of the ARIMA model is an analysis technique 

that generalizes an auto-regressive moving average (ARIMA) 
model that describes the current time series values using past 
observations and errors. However, the model can be applied 
only to stationary series, which is a time series. Specifically, 
the mean and the variance do not change regardless of the 
trend of time, and the covariance between the time points is 
not affected by the reference point. In the prediction model 
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used, as presented in Fig. 5, a prediction value at a certain time 
point is assumed as a linear combination of p observed values 
and q errors that occurred in the past. The prediction process 
consists of three stages as follows: a stage identifying p and q, 
the required parameters in this model; a stage of estimating the 
coefficients according to the selected p and q; and a stage of 
diagnosing the model. 

However, a non-stationary time series with periodicity as 
well as high and low maximum point values, is transformed 
into a stationary time series by a variable transformation, such 
as logarithmic transformation and difference, and then the 
identification and estimation and the diagnosis processes for 
the model are performed. In this case, both the difference 
between the neighboring time points and the seasonal 
difference to solve the fluctuations occurring in the cycle are 
identified, and the model in this case is called ARIMA. In this 
study, a logarithmic transformation was performed to convert 
the series into a stationary series, and the difference was set as 
1. The seasonal difference was set as 130 months, because the 
F10.7 index presents similar patterns to the solar activity cycle. 
Moreover, as the final model, ARIMA (1,1,5) × (1,1,2)130 
was applied, based on the autocorrelation and partial 
autocorrelation functions. 

 

 The similar pattern searching technique is a very realistic 
technique proposed in a previous study [1].  

 

 

Fig. 6 F10.7 Prediction Concept using Similar pattern 

 
The specific methodology of the technique is illustrated in 

the following example. As depicted in Fig. 6, taking the period 
from the most recent point to 7 years ago as a reference in the 
data used in the prediction, the period most similar to this 
period is searched for from the past data. Moreover, the data 
of the next 7 years after the most similar period are used as the 
prediction values. For example, when the prediction starts 
from August 2012, the periods that are most similar to the data 
for the 7 years from August 2005 to July 2012 are searched for 

from the collected past data. Here, “similar period” is selected 
as the period having the smallest sum of the squared errors 
with the F10.7 value of the reference period (set as “mission 
period” here). For the given data, the F10.7 data from 
December 1960 to November 1967 are chosen as the most 
similar period. 

Therefore, excluding the preparation period, the prediction 
values for the period most similar to the mission period from 
August 2014 to July 2019 is regarded as the data from 
December 1969 to November 1974. 

 

Comparison of characteristics between 
prediction techniques

 As described above, the ARIMA model is developed based 
on the strong assumption of a linear combination of the past 
observations and errors and the assumption that the time series 
data should be stationary. Therefore, it is efficient for a short-
term prediction in case the assumption is satisfied. However, 
as the prediction period becomes longer, it tends to converge 
to the mean value and has the disadvantage of the confidence 
interval becoming large. 

 Concurrently, the similar pattern searching method, which 
is a data-driven technique without using any model, has the 
advantage that it does not use a model unlike ARIMA or 
LSTM. However, in the results of searching for a period in the 
past similar to the recent 7 years, there was a problem in that 
several candidate similar periods with similar differences were 
found, and there was a disadvantage that the confidence 
interval could not be obtained. 

 Contrastingly, the ARIMA model makes a strong 
assumption of a stationary state and a linear model, whereas 
because LSTM is a non-linear model, if the optimization is 
effective, prediction values with smaller errors than in the 
ARIMA method can be obtained. However, this method also 
has a problem of over-fitting, which is typical for non-linear 
models. Furthermore, another problem is that in the case when 
there are numerous cases of selecting hyper-parameters that 
need to be input depending on the characteristics of the data 
applied, the optimization relies on a trial and error 
methodology. 

 

 

Prediction results for the period from August 
2014 to July 2019

 In Fig. 7, the comparison of the predicted and actual 
observed data for the period from August 2014 to July 2019 
by applying the three proposed methods (LSTM, ARIMA, and 
similar pattern searching method) is shown. 

From the prediction results of the three methods, it is found 
that LSTM reflects realistic change patterns for the period 
from 2014 to 2019 more than the other two methods, and the 
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similar pattern searching method is the next best. For the 
ARIMA method, as described in the previous section of 
comparing the characteristics of the prediction methods, the 
applied model tends to converge to a mean value in the case of 
long-term prediction; this model reflects almost no changes. 
Regarding the level of errors comparison, as listed in Table 1, 
the RMSE is 19.19 and MAPE is 16.08 for LSTM, which are 
relatively small compared to those of the other two methods, 
indicating that its performance is superior to those of the other 
methods. 

 

 

Fig. 7 Prediction of F10.7 Using Three Models 

 

 The above prediction period comparison from August 
2014 to July 2019 is a comparison of the case of descending 
from the maximum point to the minimum point in this period. 
In this part of the study, to investigate whether the prediction 
method is affected by the change in the patterns of the 
prediction target period, two additional prediction periods 
were considered. These are from August 2011 to July 2016 
(which is the period starting from the midpoint of the rising 
from the minimum point to the maximum point) and from 
August 2008 to July 2013 (a period rising from a minimum 
point to the maximum point). The results are summarized in 
Table 1 

 

Table 1 Performance Comparison of Predictions 
 

 LSTM ARIMA Similar 
Pattern 

RMSE 

2014.8–2019.7 
(maximum 

point→minimum 
point) 

19.19 43.27 39.46 

2011.8–2016.7 
(period including 
maximum points) 

99.82 53.43 80.39 

2008.8–2013.7 
(minimum 

point→maximum 
point) 

65.71 88.57 79.65 

MAPE 

2014.8–2019.7 
(maximum 

point→minimum 
point) 

16.08 36.10 38.25 

2011.8–2016.7 
(period including 
maximum points) 

59.02 26.63 48.73 

2008.8–2013.7 
(minimum 

point→maximum 
point) 

52.50 76.89 59.24 

 

 LSTM presents a smaller error than the other two methods in 
the two prediction periods from the maximum to the minimum 
and from the minimum to the maximum However, the largest 
error is found in the period including the maximum point 
starting from the midpoint of the minimum point and the 
maximum point. The fact that LSTM yields the smallest error 
in the two prediction periods indicates that the model is 
considerably accurate when estimating the period from a given 
period of data. However, in the period including the maximum 
point, the model showed the largest error. The reason that the 
learning was not performed well in LSTM in this period is that 
in the observed values from 1947 to 2008, there are 6 
occurrences of maximum points, and one of the maximum 
point periods has different characteristics from those of the 
other 5 maximum point periods, making the learning difficult 
for the model. This characteristic is similar to that of the 
results of the similar pattern searching method, which 
considers the change pattern of the entire period. 

These results correspond to 49.66% for LSTM, 34.17% for 
ARIMA, and 60.35% for the similar pattern searching method, 
compared to the F10.7 value of 250, which is applied as a 
constant in the past robust design values. In the robust design 
in the past, a constant value used for F10.7, and 250 is an 
overfitted value by approximately 52.85% compared to 117.88, 
the mean value of the F10.7 data in the period. Therefore, the 
predicted values, when compared to the mean value of the 
F10.7 data that were actually measured, are 5.32% for LSTM, 
–27.52% for ARIMA, and 28.0% for the similar pattern 
searching. Here, (+) indicates the value is predicted to be 
higher than the actual value and (-) indicates that the value is 
predicted to be lower than the actual value. 

 

 
Because the tests in real space environments (e.g., 

experiments of material exposure under the space environment 
at the International Space Station) are extremely difficult to be 
conducted in practice, studies that simulate or predict space 
environments are needed [8]. This study was started with the 
aim of providing a foundation for the convergence research 
between various institutions. As the first goal, this study aimed 
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to optimize the design of satellite polymer materials, including 
atomic oxygen erosion calculations. Based on this, we intend 
to develop the research into a cross-organizational study 
related to the analysis and prediction of national space data 
utilizing machine learning techniques. 

In this study, as a prediction technique of the F10.7 index, 
which is an important factor affecting atomic oxygen erosion 
in the space environment, we aimed to verify the applicability 
of LSTM, a machine learning technique that is actively used 
for time series data analysis. The results of the comparative 
analysis of the prediction performance of the ARIMA model, a 
conventional time series data analysis model proposed in the 
previous study, and the similar pattern searching technique 
were derived, and finally, the applicability of the LSTM 
method was confirmed. 

As presented by the study results, the LSTM method, with 
an accurate prediction of the cycle, was more accurate in terms 
of the size of the error compared to the traditional method, 
ARIMA. However, when predicting the section containing the 
maximum points, owing to the limitation in the given data, 
LSTM had a larger error than the ARIMA method. Therefore, 
to improve this prediction error, larger learning data are 
required. In this regard, the additional utilization of sunspots 
data, which are known to have a large correlation with the 
F10.7 index and the improvement of the LSTM model to 
better train the change, are considered as possible future 
research. When the mathematical and statistical prediction 
models proposed in this study are improved and used, they are 
expected to improve the accuracy of the prediction of the 
atomic oxygen erosion of the polymer materials used in space 
for the development of LEO satellites. This knowledge will be 
transferred to the private sector in the future, and it is also 
expected to bring practical benefits in terms of efficiency and 
cost-effectiveness in the optimization design and 
manufacturing process of such satellites in the future. 
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