• Title/Summary/Keyword: Statistical Distribution

Search Result 4,074, Processing Time 0.033 seconds

A Statistical Analysis of Fatigue Crack Growth under Constant-Amplitude Loads (일정진폭하중하의 피로균열전파의 통계적 특성)

  • Jeong, Hyeon-Cheol;Lim, Young-Kyu;Kim, Seon-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-109
    • /
    • 2002
  • In this paper, a statistical analysis of fatigue crack growth behavior under constant amplitude loads has been carried out. Fatigue crack growth tests were conducted on sixteen pre-cracked compact tension (CT) specimens of the pressure vessel (SPV50) steel in controlled identical load and environmental conditions. The assessment of the statistical distribution of fatigue crack growth experimental data obtained from SPV50 steel was studied and also the correlation of the parameter C and m in the Paris-Erdogan law was discussed. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Weibull. The fatigue crack growth rate seems to follow the 3-parameter Weibull and the log-normal distribution. The coefficient of variation (COV) of fatigue crack growth life was observed to decrease as the crack grows. A strong negative linear correlation exists between the coefficient C and the exponent m in Paris model. Fatigue crack growth rate data shows a normal distribution for both m and logC.

  • PDF

A Comparison of Mathematically Talented Students and Non-Talented Students' Level of Statistical Thinking: Statistical Modeling and Sampling Distribution Understanding (수학영재학급 학생들과 일반학급 학생들의 통계적 사고 수준 비교 연구: 변이성 모델링과 표집분포 이해 능력 중심으로)

  • Ko, Eun-Sung
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.3
    • /
    • pp.503-525
    • /
    • 2012
  • This study compared levels of mathematically talented students' statistical thinking with those of non-talented students in statistical modeling and sampling distribution understanding. t tests were conducted to test for statistically significant differences between mathematically gifted students and non-gifted students. In case of statistical modeling, for both of elementary and middle school graders, the t tests show that there is a statistically significant difference between mathematically gifted students and non-gifted students. Table of frequencies of each level, however, shows that levels of mathematically gifted students' thinking were not distributed at the high levels but were overlapped with those of non-gifted students. A similar tendency is also present in sampling distribution understanding. These results are thought-provoking results in statistics instruction for mathematically talented students.

Skew Normal Boxplot and Outliers

  • Huh, Myung-Hoe;Lee, Yong-Goo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.591-595
    • /
    • 2012
  • We frequently use Tukey's boxplot to identify outliers in the batch of observations of the continuous variable. In doing so, we implicitly assume that the underlying distribution belongs to the family of normal distributions. Such a practice of data handling is often superficial and improper, since in reality too many variables manifest the skewness. In this short paper, we build a modified boxplot and set the outlier identification procedure by assuming that the observations are generated from the skew normal distribution (Azzalini, 1985), which is an extension of the normal distribution. Statistical performance of the proposed procedure is examined with simulated datasets.

Robust inference with order constraint in microarray study

  • Kang, Joonsung
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.559-568
    • /
    • 2018
  • Gene classification can involve complex order-restricted inference. Examining gene expression pattern across groups with order-restriction makes standard statistical inference ineffective and thus, requires different methods. For this problem, Roy's union-intersection principle has some merit. The M-estimator adjusting for outlier arrays in a microarray study produces a robust test statistic with distribution-insensitive clustering of genes. The M-estimator in conjunction with a union-intersection principle provides a nonstandard robust procedure. By exact permutation distribution theory, a conditionally distribution-free test based on the proposed test statistic generates corresponding p-values in a small sample size setup. We apply a false discovery rate (FDR) as a multiple testing procedure to p-values in simulated data and real microarray data. FDR procedure for proposed test statistics controls the FDR at all levels of ${\alpha}$ and ${\pi}_0$ (the proportion of true null); however, the FDR procedure for test statistics based upon normal theory (ANOVA) fails to control FDR.

Statistical Analysis of End-to-End Delay for VoIP Service in Mobile WiMAX Networks

  • Islam, Mohd. Noor;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.196-201
    • /
    • 2010
  • Measurement of Quality of Service (QoS) parameters and its statistical analysis becomes a key issue for Mobile WiMAX service providers to manage the converged network efficiently and to support end-to-end QoS. In this paper, we investigate the population distribution of end-to-end one-way delay which is the most important QoS parameter in Mobile WiMAX networks. The samples are analyzed with Chi-Square Goodness-of-Fit test, Kolmogorov-Smirnov (K-S), and Anderson-Darling (A-D) test to verify the distribution of parent population. The relation with confidence level and the minimum number of sample size is also performed for logistic distribution. The statistical analysis is a promising approach for measuring the performance Mobile WiMAX networks.

Classical and Bayesian studies for a new lifetime model in presence of type-II censoring

  • Goyal, Teena;Rai, Piyush K;Maury, Sandeep K
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.385-410
    • /
    • 2019
  • This paper proposes a new class of distribution using the concept of exponentiated of distribution function that provides a more flexible model to the baseline model. It also proposes a new lifetime distribution with different types of hazard rates such as decreasing, increasing and bathtub. After studying some basic statistical properties and parameter estimation procedure in case of complete sample observation, we have studied point and interval estimation procedures in presence of type-II censored samples under a classical as well as Bayesian paradigm. In the Bayesian paradigm, we considered a Gibbs sampler under Metropolis-Hasting for estimation under two different loss functions. After simulation studies, three different real datasets having various nature are considered for showing the suitability of the proposed model.

Higher Order Statistical Analysis of Sound-Vibration Signal in Rolling Element Bearing with defects (결함이 있는 회전요소 베어링에서 음향-진동 신호의 고차 통계해석)

  • 이해철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.49-56
    • /
    • 1999
  • This paper present a study on the application of sound pressure and vibration signals to detect the presence of defects in a rolling element bearing using a statistical analysis method. The well established statistical parameters such as the crest factor and the distribution of moments including kurtosis and skewless are utilized in this study. In addition, other statistical parameters derived from the beta distribution function are also used. A comparison study on the performance of the different types of parameter used is also performed. The statistical analysis is used because of its simplicity and quick computation. Under ideal conditions, the statistical method can be used to identify the different types of defect present in the bearing. In addition, the results also reveal that there is no significant advantages in using the beta function parameters when compared to using kurtosis and the crest factor for detecting and identifying defects in rolling element bearings from both sound and vibration signals.

  • PDF

A Study on the Condition Monitoring for Rolling Element Bearing using Higher Order Statistical Analysis of Sound-Vibration Signal (음향-진동 신호의 고차 통계해석을 이용한 회전요소 베어링의 상황감시에 관한 연구)

  • 이해철;이준서;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.405-413
    • /
    • 2000
  • This paper present study on the application of sound pressure and vibration signals to detect the presence of defects in a rolling element bearing using a statistical analysis method. The well established statistical parameters such as the crest factor and the distribution of moments including kurtosis and skew are utilized in this study. In addition, other statistical parameters derived from the beta distribution function are also used. A comparison study on the performance of the different types of parameter used is also performed. The statistical analysis is used because of its simplicity and quick computation. Under ideal conditions, the statistical method can be used to identify the different types of defect present in the bearing. In addition, the results also reveal that there is no significant advantages in using the beta function parameters when compared to using kurtosis and the crest factor for detecting and identifying defects in rolling element bearings from both sound and vibration signals.

  • PDF

A Comparison Study on Statistical Modeling Methods (통계모델링 방법의 비교 연구)

  • Noh, Yoojeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.645-652
    • /
    • 2016
  • The statistical modeling of input random variables is necessary in reliability analysis, reliability-based design optimization, and statistical validation and calibration of analysis models of mechanical systems. In statistical modeling methods, there are the Akaike Information Criterion (AIC), AIC correction (AICc), Bayesian Information Criterion, Maximum Likelihood Estimation (MLE), and Bayesian method. Those methods basically select the best fitted distribution among candidate models by calculating their likelihood function values from a given data set. The number of data or parameters in some methods are considered to identify the distribution types. On the other hand, the engineers in a real field have difficulties in selecting the statistical modeling method to obtain a statistical model of the experimental data because of a lack of knowledge of those methods. In this study, commonly used statistical modeling methods were compared using statistical simulation tests. Their advantages and disadvantages were then analyzed. In the simulation tests, various types of distribution were assumed as populations and the samples were generated randomly from them with different sample sizes. Real engineering data were used to verify each statistical modeling method.