• Title/Summary/Keyword: Stationary source

Search Result 240, Processing Time 0.028 seconds

Potential Impact of Timber Supply and Fuel-Wood on the Atmospheric Carbon Mitigation : A Carbon Cycle Modeling Approach (목재공급과 연료용 목재가 대기에 축적된 탄소저감에 미치는 잠재적 영향 : 탄소순환모형 접근법)

  • Lyon, Kenneth S.;Lee, Dug Man
    • Environmental and Resource Economics Review
    • /
    • v.19 no.3
    • /
    • pp.597-632
    • /
    • 2010
  • There is general agreement that global warming is occurring and that the main contributor to this probably is the buildup of green house gasses, GHG, in the atmosphere. Two main contributors are the utilization of fossil fuels and the deforestation of many regions of the world. The burning of fossil fuels increases atmospheric carbon while the burning of fuel-wood reducing fossil fuel consumption along with its forest source maintain an atmospheric carbon level. The standing timber in the forests is a carbon sink, as are wood buildings and structures, and fossil fuel in the ground. This paper is designed to examine a number of current issues related to mitigating the global warming problem through forestry. For this purpose, we develop a modeling approach by integrating timber market, fossil fuel market and carbon cycling model. We use discrete time optimal control theory to identify optimal time paths, the laws of motion, and stationary stats solutions of endogenous variables in the model. On the basis of these results, we identify the optimal amounts of subsidies to be provided or taxes to be imposed by the regulatory agency to mitigate atmospheric carbon accumulation. We also present a numerical example to help illustrate the characteristics of variables in the model when the social cost for atmospheric carbon incrementally shifts upward. A surprising result is that the social cost function for atmospheric carbon has a very smaller impact on the optimal rotation period than previous literature suggested.

  • PDF

Favorable Condition for Mycelial Growth of Tricholoma matsutake (송이균 배양을 위한 균사생장 조건)

  • Kim, In-Yeup;Jung, Gwang-Reul;Han, Sang-Kuk;Cha, Joo-Young;Sung, Jae-Mo
    • The Korean Journal of Mycology
    • /
    • v.33 no.1
    • /
    • pp.22-29
    • /
    • 2005
  • The main objectives of this research were to study the cultural and nutritional characteristics of Tricholoma matsutake and to establish its liquid culture system. The optimum growth of T. matsutake was observed in HA and TMM agar media. Similarly highest growth was observed in PDB and TMM liquid media. The optimal temperature for the mycelial growth was $25^{\circ}C$. The most suitable carbon source was dextrin among 12 different carbon sources tested. Yeast extract and peptone were best nitrogen sources among 17 different sources tested. The optimum mineral salts were $Fe_{2}(SO_{4})_{3}{\cdot}H_{2}O$ and KCl among 9 different sources tested. Shaking culture gave higher mycelial growth compared to stationary culture. Similarly, optimum medium amount for shaking culture was 100 ml per 250 ml flask. The highest mycelial growth was obtained when $5{\sim}7$ mycelial discs were inoculated in 100 ml of medium and incubated for $8{\sim}9$ weeks, respectively. The highest proportion of mycelial growth was observed at 40 : 1 ratio of medium to inoculum volume in 8 l air-lift fermenter.

Lipids from the rhizome of Cnidium officinalis Makino (천궁으로부터 lipid 의 분리 동정)

  • Kim, Hyoung-Geun;Jeon, Hyeong-Ju;Nguyen, Trong Nguyen;Lee, Dae Young;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.343-349
    • /
    • 2021
  • The rhizomes of Cnidium officinalis were extracted in aqueous MeOH, and the concentrate was fractionated via systematic solvent fractionation to EtOAc, n-BuOH, and aqueous fractions. The repeated column chromatography of EtOAc and n-BuOH fractions using silica gel, octadecyl silica gel, and Sephadex LH-20 as stationary phase to afford five lipids. They were identified to be methyl linoleate (1), linoleic aicd (2) 6-linoleoyl-𝛼-D-glucopyranosyl 𝛽-D-fructofuranoside (3), 1-linolenoyl-3-(𝛼-D-galactopyranosyl (1→6)-𝛽-D-galactopyranosyl) glycerol (4), and 1-linoleoyl-3-(𝛼-D-galactopyranosyl (1→6)-𝛽-D-galactopyranosyl) glycerol (5) on the basis of spectroscopic data such as IR, MS, and Nuclear magnetic resonance (NMR). Compounds 1 and 3-5 were isolated for the first time from this plant in this study. The NMR data of fatty acids 1 and 2 reported in literatures are different each other. Authors identified the NMR data without ambiguity. Compound 3, a conjugate of sucrose and fatty acid, and compounds 4 and 5, digalactosyl monoglyceride, are very rarely occurred in natural source. Through the immune enhancement and anticancer activity of the reported lipid compounds, the potential as various pharmacologically active materials of Cnidium officinalis rhizome can be expected.

Considerations of Environmental Factors Affecting the Detection of Underwater Acoustic Signals in the Continental Regions of the East Coast Sea of Korea

  • Na, Young-Nam;Kim, Young-Gyu;Kim, Young-Sun;Park, Joung-Soo;Kim, Eui-Hyung;Chae, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.30-45
    • /
    • 2001
  • This study considers the environmental factors affecting propagation loss and sonar performance in the continental regions of the East Coast Sea of Korea. Water mass distributions appear to change dramatically in a few weeks. Simple calculation with the case when the NKCW (North Korean Cold Water) develops shows that the difference in propagation loss may reach in the worst up to 10dB over range 5km. Another factor, an eddy, has typical dimensions of 100-200km in diameter and 150-200m in thickness. Employing a typical eddy and assuming frequency to be 100Hz, its effects on propagation loss appear to make lower the normal formation of convergence zones with which sonars are possible to detect long-range targets. The change of convergence zones may result in 10dB difference in received signals in a given depth. Thermal fronts also appear to be critical restrictions to operating sonars in shallow waters. Assuming frequency to be 200Hz, thermal fronts can make 10dB difference in propagation loss between with and without them over range 20km. An observation made in one site in the East Coast Sea of Korea reveals that internal waves may appear in near-inertial period and their spectra may exist in periods 2-17min. A simulation employing simple internal wave packets gives that they break convergence zones on the bottom, causing the performance degradation of FOM as much as 4dB in frequency 1kHz. An acoustic experiment, using fixed source and receiver at the same site, shows that the received signals fluctuate tremendously with time reaching up to 6.5dB in frequencies 1kHz or less. Ambient noises give negative effects directly on sonar performance. Measurements at some sites in the East Coast Sea of Korea suggest that the noise levels greatly fluctuate with time, for example noon and early morning, mainly due to ship traffics. The average difference in a day may reach 10dB in frequency 200Hz. Another experiment using an array of hydrophones gives that the spectrum levels of ambient noises are highly directional, their difference being as large as 10dB with vertical or horizontal angles. This fact strongly implies that we should obtain in-situ information of noise levels to estimate reasonable sonar performance. As one of non-stationary noise sources, an eel may give serious problems to sonar operation on or under the sea bottoms. Observed eel noises in a pier of water depth 14m appear to have duration time of about 0.4 seconds and frequency ranges of 0.2-2.8kHz. The 'song'of an eel increases ambient noise levels to average 2.16dB in the frequencies concerned, being large enough to degrade detection performance of the sonars on or below sediments. An experiment using hydrophones in water and sediment gives that sensitivity drops of 3-4dB are expected for the hydrophones laid in sediment at frequencies of 0.5-1.5kHz. The SNR difference between in water and in sediment, however, shows large fluctuations rather than stable patterns with the source-receiver ranges.

  • PDF

A Study on the Characteristics of PM1.0 Chemical Components Using a Real-time Aerosol Mass Spectrometer (실시간 에어로졸 질량분석기를 이용한 PM1.0의 화학적성분의 특성에 관한 연구)

  • Park, Jinsoo;Choi, Jinsoo;Kim, Hyunjae;Oh, Jun;Sung, Minyoung;Ahn, Joonyoung;Lee, Sangbo;Kim, Jeongho
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.485-494
    • /
    • 2018
  • This study aims to identify the characteristics of oxidation and chemical composition of PM in winter season, 2017 at Incheon area. The mean concentration of air pollutants were $46{\pm}22{\mu}g/m^3-PM_{10}$, $29{\pm}18{\mu}g/m^3/-PM_{2.5}$, $5{\pm}3ppb-SO_2$, $0.56{\pm}0.24ppm-CO$, $21{\pm}13ppb-O_3$ and $28{\pm}17ppb-NO_2$, respectively. The dominant ion of the $PM_{1.0}$ chemical component were organic with $3.2{\mu}g/m^3$ and nitrate with $1.9{\mu}g/m^3$. The day and night variation of the $PM_{1.0}$ chemical components was higher in nighttime than those of daytime. The averaged nitrate oxidation rate (SOR) was 0.06 and sulfate oxidation rate was 0.11 during the field campaign. In the high mass loading period, nitrate oxidation rate (NOR) was up to 0.6 and also the nitrate in $PM_{1.0}$ was increased. The averaged ratio of $NO_x/SO_2$ was 8.7 and nitrate/sulfate was 3.1, respectively. In this results, the nitrate component in $PM_{1.0}$ was influenced by NOx from the stationary source as power plant and the mobile source around the measurement site.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Development of Saccharomyces cerevisiae Strains with High RNA Content (리보핵산을 다량으로 함유하는 Saccharomyces cerevisiae 균주의 개발)

  • Kim, Jae-Sik;Kim, Jin-Wook;Shim, Won;Min, Byoung-Cheol;Kim, Jung-Wan;Park, Kwan-Hwa;Pek, Un-Hua
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.465-474
    • /
    • 1999
  • RNase activity of Saccharomyces cerevisiae ATCC 7754 was investigated to obtain strains with high ribonucleic acid (RNA) content. The yeast strain contained two RNase activities; an acidic RNase with a optima of pH $3{\sim}4$ and an alkaline RNase with a optima pH 9. The acidic RNase activity was inhibited by $0.08\;M\;HgCl_{2}$ most drastically. The alkaline RNase activity was inhibited by 2.0 M NaCl or KCl, while enhanced by addition of $0.05\;M\;CaCl_{2},\;0.02\;M\;ZnSO_{4},\;or\;0.008\;M\;HgCl_{2}$. Various mutants of Saccharomyces cerevisiae ATCC 7754 were isolated by ethylmethane sulfonate (EMS) treatment or $\gamma$-ray/ultra violet irradiation. Among the mutants that were sensitive to high concentration of KCl which inhibits alkaline RNase, B24 was selected for high RNA content per culture volume. Growth characteristics of the mutant were comparable to those of the mother strain with optimum growth at pH $4.5{\sim}5.5$. The mutant accumulated higher content of RNA than the mother strain when glucose was used as the carbon source. However, both growth rate and total RNA content of the mutant were higher in molasses medium than in glucose medium. RNA content of the mutant increased rapidly during the early stage of growth, and then decreased gradually until the culture reached stationary phase by a fed-batch culture in a 5 L jar fermenter. Maximal cell harvest and the final RNA content using the mutant B24 were 69.6 g/L culture broth and 19.8 g/100 g of the dry cell while those using the mother strain were 68 g/L culture broth and 16.1 g/100 g of dry cell, respectively.

  • PDF

Studies on the Brewing of Apple Wine -Culture Conditions of a Cider Yeast, Saccharomyces sp. R-11 on the Synthetic Medium (사과주(酒) 양조(釀造)에 관한 연구(硏究) -사과주효모(酒酵母) Saccharomyces sp. R-11의 합성배지((合成培地)에서의 배양(培養) 조건(條件)-)

  • Chung, Ki-Taek;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.10 no.2
    • /
    • pp.75-83
    • /
    • 1982
  • As a primary study for cell growth and alcohol production of a cider yeast, Saccharomyces sp. R-11, cultural and nutritional characteristics of the strain were investigated. The results obtained were as follows: The optimum culture medium for this strain was a synthetic medium, Henneberg B, and sucrose was the best carbon source for yeast growth and alcohol production. Optimum sugar concentrations for yeast growth and alcohol production were 15% and 25%, respectively. Optimum pH and temperature of the basal medium for growth of this strain were 4.5 and $30^{\circ}C$ respectively. The yeast growth was enhanced by the addition of 100 ppm of $Mg^{2+}$, but significantly inhibited by the addition of 100 ppm of $Co^{2+}$. Lower temperature and maintenance of optimum pH for yeast growth increased the final alcohol concentration. Under optimum condition for cell growth at stationary culture, generation time and specific growth rate of the strain were 7.5 hr and 0.092 $hr^{-1}$, respectively. At 8% initial alcohol concentration, yeast growth was inhibited about 50% and this strain could not be grown at more than 12% initial alcohol. The strain could be grown at less than 125ppm $SO_2$without alcohol addition, and at less than 75 ppm $SO_2$ with 8% initial alcohol. The higher sulfur dioxide concentration of a medium, the longer lag phase in yeast growth was observed. This strain could induced alcoholic fermentation at less than 10% initial alcohol concentration with 0 and 25 ppm $SO_2$, at less than 8% initial alcohol with 50 and 75 ppm $SO_2$, and at less than 6% initial alcohol with 100 and 125 ppm $SO_2$.

  • PDF

In-situ Treatment for the Attenuation of Phosphorus Release from Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 In-situ 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Kang, Sung-Won;Kim, Young-Im
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.563-572
    • /
    • 2006
  • In order to propose optimum in-situ treatment for reducing phosphorous release from sediment of stationary lakes, a series of column tests were performed. The sediment used in experiment was very fine clay with a mean grain site $7.7{\phi}$ and high $C_{org}$ contents(2.4%). Phosphorous releases were evaluated in two ways : in lake water(with microbial effect) and in distilled water(without microbial effect). As in-situ capping material, sand and loess were used while Fe-Gypsum and $SiO_2$-Gypsum were used for in-situ chemical treatment. In case of lake water considering the effect of microorganism, phosphorous concentration rapidly decreased in the early stage of experiment but it was gradually increased after 10 days. Flux of phosphorous release for control was $3.0mg/m^2{\cdot}d$. Whereas, those for sand layer capping(5 cm) and loess layer capping(5 cm) were $2.5mg/m^2{\cdot}d\;and\;1.8mg/m^2{\cdot}d$, respectively because the latter two were not consolidated sufficiently. For Fe-gypsum and $SiO_2$-gypsum the fluxes were $1.4mg/m^2{\cdot}d$ which meant that reduction efficiency of phosphorous release was more than 40% higher than that of control. The case capping with complex layer was $1.0mg/m^2{\cdot}d$, which showed high reduction efficiency over 60%. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment reduced release of Phosphorus from the sediments. Gypsum acted as a slow-releasing source of sulphate in sediment, which enhanced the activity of SRB(sulfate reducing bacteria) and improved the overall mineralization rate of organic matter.

An Empirical Analysis of Fixed Asset Investment Smoothing Effects of Working Capital (운전자본의 고정자산투자 스무딩효과의 실증적 분석)

  • Shin, Min-Shik;Kim, Soo-Eun;Kim, Gong-Young
    • The Korean Journal of Financial Management
    • /
    • v.25 no.4
    • /
    • pp.25-51
    • /
    • 2008
  • In this paper, we analyse empirically the fixed asset investment smoothing of working capital of firms listed on Korea Securities Market. The main results of this study can be summarized as follows. Firms will seek to lower long-term cost by smoothing fixed asset investment and maintaining stationary investment with working capital. Working capital is not only an important use of fund, but also a source of liquidity that should be used to smooth fixed asset investment relative to cash flow shocks if firms face financial constraints. Working capital investment is more sensitive than fixed asset investment to cash flow fluctuations. If firms face financial constraints, working capital investment will compete with fixed asset investment for the limited pool of available cash flows. So, fixed asset investment will have negative relationship with working capital investment. However, criticism that the positive correlation between cash flows and fixed asset investment could arise simply because cash flows is proxy variable for investment demand. Finally, controlling for the fixed asset investment smoothing effects of working capital results in a much larger estimate of the long run impact of financial constraints. Financial constraints is measured by dividend payout ratio and market access level. Fazzari et al. (1988), Fazzari and Petersen (1993), and Faulkender et al. (2008) emphasize that low dividend firms or market unaccessible firms are more likely to face financial constraints, and rarely make use of new equity issuing. The results from empirical analysis show that financial constraints can be better explained using 'adjustment cost' concept. Specifically, the results show that financial constraints exist and that in order to measure financial constraint effects more succinctly, fixed asset investment smoothing effects with working capital should be considered.

  • PDF