• Title/Summary/Keyword: Stationary MEA

Search Result 3, Processing Time 0.017 seconds

Performance Comparison Between Stationary PEMFC MEA and Automobile MEA under Pure Hydrogen Supply Condition (순수 수소 공급조건에서 정치용 PEMFC MEA와 차량용 MEA 성능비교)

  • Oh, Sohyeong;Lee, Mihwa;Lee, Hakju;Kim, Wookwon;Park, Jeong-Woo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.469-473
    • /
    • 2018
  • When pure hydrogen was supplied to the stationary PEMFC generally using the reforming gas, its characteristics were compared with the vehicle PEMFC. The effect of varying the amount of hydrogen supply to the anode on the overall performance was compared. The variation of hydrogen supply in the range of 1.0~1.7 excess (stoi.) had little effect on the OCV of stationary and vehicle MEA (Membrane and Electrode Assembly). At 0.7 V, the current density of the stationary MEA was about 16% higher than that of the vehicle MEA. I-V performance, impedance, and LSV were measured with varying relative humidity. Both OCV and electrolyte membrane resistances decreased with increasing relative humidity. The hydrogen permeability of the stationary MEA was lower than that of the vehicle MEA, showing that the durability of the stationary membrane could be higher than that of the vehicle membrane.

Durability Evaluation of Stationary PEMFC MEA by OCV Holding Method (정치용 PEMFC MEA의 OCV 유지 방법에 의한 내구 평가)

  • Oh, So-Hydong;Lee, Mihwa;Yun, Jeawon;Lee, Hakju;Kim, Wookwon;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.344-350
    • /
    • 2019
  • Durability is very important for the commercialization of membranes and electrode assemblies (MEA) developed for proton exchange membrane fuel cells (PEMFC). Durability evaluation of stationary PEMFC MEA has a problem that the voltage change rate should be measured for a long time over 1000 hours under constant current conditions. In this study, the electrochemical durability evaluation protocol of membranes (OCV holding method) using to vehicle MEAs was applied to the stationary MEA for the purpose of shortening the durability evaluation time. After operation of the stationary and automobile MEA for 168 hours under conditions of OCV, cathode oxygen, $90^{\circ}C$ and relative humidity of 30%, I-V, LSV, CV, impedance and FER were measured and compared. When the hydrogen permeability, OCV change, ionic conductivity, and fluorine flow rate, which represent the durability of the membrane after degradation, were all examined, it was shown that durability of stationary MEA membrane was better than that of vehicles MEA membrane. In addition, the electrode degradation of stationary MEA was smaller than that of vehicles MEA after degradation operation. It was possible to evaluate in a short time using automotive protocol that the durability of stationary MEA was superior that of vehicle MEA in terms of membrane and the electrode.

A Comprehensive Review of PEMFC Durability Test Protocol of Pt Catalyst and MEA (수소연료전지 백금촉매 및 MEA 장기내구성 평가 방법의 비교)

  • Ham, Kahyun;Chung, Sunki;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.659-666
    • /
    • 2019
  • Proton exchange membrane fuel cells (PEMFCs) generate electricity by electrochemical reactions of hydrogen and oxygen. PEMFCs are expected to alternate electric power generator using fossil fuels with various advantages of high power density, low operating temperature, and environmental-friendly products. PEMFCs have widely been used in a number of applications such as fuel cell vehicles (FCVs) and stationary fuel cell systems. However, there are remaining technical issues, particularly the long-term durability of each part of fuel cells. Degradation of a carbon supported-platinum catalyst in the anode and cathode follows various mechanistic origins in different fuel cell operating conditions, and thus accelerated stress test (AST) is suggested to evaluate the durability of electrocatalyst. In this article, comparable protocols of the AST durability test are intensively explained.