• Title/Summary/Keyword: Stationary Grid

Search Result 66, Processing Time 0.021 seconds

Numerical Analysis of Violent Sloshing Problems by CCUP Method (CCUP 기법을 이용한 2 차원 슬로싱 문제의 수치해석)

  • Yang, Kyung-Kyu;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In the present paper, a numerical method based on the constraint interpolation profile (CIP) method is applied for simulating two-dimensional violent sloshing problems. The free surface boundary value problem is considered as a multiphase problem which includes water and air. A stationary Cartesian grid system is adopted, and an interface capturing method is used to trace the shape of free surface profile. The CIP combined unified procedure (CCUP) scheme is applied for flow solver, and the tangent of hyperbola for interface capturing (THINC) scheme is used for interface capturing. Numerical simulations have been carried out for partially-filled 2D tanks under forced sway and roll motions at various filling depths and frequencies. The computational results are compared with experiments and/or the other numerical results to validate the present numerical method.

The Study on Detecting Scheme of Voltage Sag using the Two Difference Voltage (이중 차 전압을 이용한 전압 새그 검출 기법에 관한 연구)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.65-73
    • /
    • 2014
  • In this paper, the detection scheme of the voltage variation using a two difference voltage is proposed. The conventional sag detector is from a single-phase digital phase-locked loop (DPLL) that is based on a d-q transformation using an all-pass filter (APF). The APF generates a virtual q-axis voltage component with $90^{\circ}$ phase delay but the APF cannot generate the virtual q-axis voltage depending on the phase of the grid voltage. To overcome the problem, q-axis voltage component is generated from difference between the current and previous value of d-axis voltage component in the stationary reference frame. However, the difference voltage around the zero crossing is not enough to detect the voltage sag. Therefore, the new detection scheme using the two difference voltage which can detect the sag around the zero crossing voltage is proposed.

The Study on Sag Detecting Scheme around Zero Crossing Voltage for Single-Phase Inverter System (단상 인버터 시스템에서 영 전압 근처 전압 강하 검출 기법에 관한 연구)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.96-104
    • /
    • 2014
  • The all pass filter generates a virtual q-axis voltage component with $90^{\circ}$ phase delay but the virtual q-axis voltage cannot detect the voltage depending on the phase of the grid voltage. To overcome the problem, q-axis voltage component is generated from difference between the current and previous value of d-axis voltage component in the stationary reference frame. However, the difference voltage between the current and previous value around the zero crossing voltage is not enough to detect the voltage sag. Therefore, the new detection scheme which can detect the sag around the zero crossing voltage is proposed.

Grid-Based Key Pre-Distribution for Factory Equipment Monitoring (공장 설비 모니터링을 위한 그리드 기반 키 선분배 기법)

  • Cho, YangHui;Park, JaePyo;Yang, SeungMin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.147-152
    • /
    • 2016
  • Wireless sensor networks that are easy to deploy and install are ideal for building a system that monitors the condition of the equipment in a factory environment where wiring is difficult. The ZigBee has characteristics of low price and low power compared with other wireless communication protocols and is suitable for a monitoring system requiring a plurality of nodes. ZigBee communication requires encryption security between devices because all protocol layers are based on OTM trusted by each other. In the communication between nodes, node authentication must be guaranteed and exposure of confidential information managed by each node should be minimized. The facilities of the factory are regular and stationary in distribution location. In order to protect the information gathered from the sensor in the factory environment and the actuator control information connected to the sensor node, we propose a cryptosystem based on the two - dimensional grid - based key distribution method similar to the distribution environment of the facility.

Dead Time Compensation of Grid-connected Inverter Using Resonant Controller (공진 제어기를 이용한 계통 연계형 인버터의 데드타임 보상)

  • Han, Sang-Hyup;Park, Jong-Hyoung;Kim, Heung-Geun;Cha, Honn-Yong;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.569-576
    • /
    • 2011
  • This paper proposes a new dead time compensation method for a PWM inverter. Recently, PWM inverters are extensively used for industry applications, such as ac motor drives, distributed grid-connected systems and a static synchronous compensator (STATCOM). Nonlinear characteristics of the switch and the inverter dead time cause a current distortion and deterioration of power quality. The dominant harmonics in the output current are the $5^{th}$ and $7^{th}$ harmonics in the stationary frame, and the $6^{th}$ harmonics in the synchronous rotating frame. In this paper, a resonant controller which compensates the $6^{th}$ harmonics in the synchronous rotating frame is proposed. This method does not require any off-line experimental measurements, additional hardware and complicated mathematical computations. Furthermore, the proposed method is easy to implement and does not cause any stability problem.

DEVELOPMENT OF A NUMERICAL SIMULATION METHOD FOR THE ANALYSIS OF SLOSHING PROBLEMS BASED ON CCUP SCHEME (슬로싱 해석을 위한 CCUP 기반 시뮬레이션 기술 개발)

  • Park, J.C.;Hwang, S.C.;Jeong, S.M.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • A new computational program, which is based on the CIP/CCUP(Constraint Interpolation Profile/CIP Combined Unified Procedure) method, has been developed to numerically analyse sloshing phenomena dealt as multiphase-flow problems. For the convection terms of Navier-Stokes equations, the RCIP(Rational function CIP) method was adopted and the THINC-WLIC(Tangent of Hyperbola for Interface Capturing-Weighted Line Interface Calculation) method was used to capture the air/water interface. To validate the present numerical method, two-dimensional dam-breaking and sloshing problems in a rectangular tank were solved by the developed method in a stationary Cartesian grid system. In the case of sloshing problems, simulations by using a improved MPS(Moving Particle Simulation) method, which is named as PNU-MPS(Pusan National University-MPS), were also carried out. The computational results are compared with those of experiments and most of the comparisons are reasonably good.

Development of new MCFC application products (MCFC 전략제품 개발)

  • Hwang, Jung Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.129.1-129.1
    • /
    • 2010
  • Since the commencement of the fuel cell business in 2007, POSCO POWER has been the major supplier of the MCFC (Molten Carbonate Fuel Cell), which is the most commercialized stationary fuel cell system in the world. With its quite, yet active movement, more than 20MW MCFC systems have been installed and are operating in Korea. While trying to localize the components and set up a firm supply chain in Korea to provide more reliable and cost-competitive products to its customers, POSCO POWER is also devoting itself to developing new MCFC application products. One such product is a back-up power system, in which a back-up algorithm is embedded to the present system so that the product can work as a back-up generator in case of grid failure. The technology to enhance load following capability of a stack module is also being developed with the back-up algorithm. Another example is a building application, the goal being to make the present Sub-MW product suitable for urban area. For this, downsizing and modularization are the main R&D scope. The project for developing ship service fuel cell for APU application will launch soon as well. In the project, a system which can operate in marine environment, and reforming technology for liquid logistic fuel will be developed.

  • PDF

A Novel Single Phase Synchronous Reference Frame Phase-Locked Loop with a Constant Zero Orthogonal Component

  • Li, Ming;Wang, Yue;Fang, Xiong;Gao, Yuan;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1334-1344
    • /
    • 2014
  • A novel single phase Phase-Locked Loop (PLL) is proposed in this paper to accurately and rapidly estimate the instantaneous phase angle of a grid. A conjugate rotating vector pair is proposed and defined to synthesize the single phase signal in the stationary reference frame. With this concept, the proposed PLL innovatively sets one phase input of the PARK transformation to a constant zero. By means of a proper cancellation, a zero steady state phase angle estimation error can be achieved, even under magnitude and frequency variations. The proposed PLL structure is presented together with guidelines for parameters adjustment. The performance of the proposed PLL is verified by comprehensive experiments. Satisfactory phase angle estimation can be achieved within one input signal cycle, and the estimation error can be totally eliminated in four input cycles for the most severe conditions.

Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor-Current-Feedback Active Damping

  • Lyu, Yongcan;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1322-1333
    • /
    • 2014
  • To track the sinusoidal current under stationary frame and suppress the effects of low-order grid harmonics, the multi-resonant quasi-proportional plus resonant (PR) controller has been extensively used for digitally controlled LCL-type pulse-width modulation (PWM) converters with capacitor-current-feedback active damping. However, designing the controller is difficult because of its high order and large number of parameters. Moreover, the computation and PWM delays of the digitally controlled system significantly affect damping performance. In this study, the delay effect is analyzed by using the Nyquist diagrams and the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance, that is, steady-state error and stability margin, identifies that different control parameters play different decisive roles in current loop performance. Based on the analysis, a simplified controller design method based on the system specifications is proposed. Following the method, two design examples are given, and the experimental results verify the practicability and feasibility of the proposed design method.

Development of Low Dissipative AUSM-type Scheme (Low Dissipative AUSM-type 수치기법 개발)

  • Kim, Kyu-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.12-26
    • /
    • 2004
  • A new treatment of cell-interface flux in AUSM-type methods is introduced to reduce the numerical dissipation. Through analysis of TVD limiters, a criterion for the more accurate prediction of cell-interface state is found out and M-AUSMPW+ is developed by determining the transferred property newly and appropriately within the criterion. The superiority of M-AUSMPW+ is clearly revealed in multi-dimensional flow problems. It can eliminate numerical dissipation effectively in a non-flow aligned grid system. As a result, M-AUSMPW+ is shown to be much more accurate and effective than other previous schemes in multi-dimensional problems. Through a stationary contact discontinuity, a vortex flow, a shock wave/boundary layer interactions and viscous shock tube problems, it is verified that accuracy of M-AUSMPW+ is improved.