• 제목/요약/키워드: Stationary Distribution of the System States

검색결과 2건 처리시간 0.017초

BMAP(r)/M(r)/N(r) 대기행렬시스템 분석 (Analysis of BMAP(r)/M(r)/N(r) Type Queueing System Operating in Random Environment)

  • 김제숭
    • 대한산업공학회지
    • /
    • 제42권1호
    • /
    • pp.30-37
    • /
    • 2016
  • A multi-server queueing system with an infinite buffer and impatient customers is analyzed. The system operates in the finite state Markovian random environment. The number of available servers, the parameters of the batch Markovian arrival process, the rate of customers' service, and the impatience intensity depend on the current state of the random environment and immediately change their values at the moments of jumps of the random environment. Dynamics of the system is described by the multi-dimensional asymptotically quasi-Toeplitz Markov chain. The ergodicity condition is derived. The main performance measures of the system are calculated. Numerical results are presented.

Conditional sojourn time distributions in M/G/1 and G/M/1 queues under PMλ-service policy

  • Kim, Sunggon
    • Communications for Statistical Applications and Methods
    • /
    • 제25권4호
    • /
    • pp.443-451
    • /
    • 2018
  • $P^M_{\lambda}$-service policy is a workload dependent hysteretic policy. The policy has two service states comprised of the ordinary stage and the fast stage. An ordinary service stage is initiated by the arrival of a customer in an idle state. When the workload of the server surpasses threshold ${\lambda}$, the ordinary service stage changes to the fast service state, and it continues until the system is empty. These service stages alternate in this manner. When the cost of changing service stages is high, the hysteretic policy is more efficient than the threshold policy, where a service stage changes immediately into the other service stage at either case of the workload's surpassing or crossing down a threshold. $P^M_{\lambda}$-service policy is a modification of $P^M_{\lambda}$-policy proposed to control finite dams, and also an extension of the well-known D-policy. The distributions of the stationary workload of $P^M_{\lambda}$-service policy and its variants are studied well. However, there is no known result on the sojourn time distribution. We prove that there is a relation between the sojourn time of a customer and the first up-crossing time of the workload process over the threshold ${\lambda}$ after the arrival of the customer. Using the relation and the duality of M/G/1 and G/M/1 queues, we obtain conditional sojourn time distributions in M/G/1 and G/M/1 queues under the policy.