• 제목/요약/키워드: Static recrystallization

검색결과 30건 처리시간 0.034초

Alloy 718의 잉고트 파쇄공정시 재결정거동에 대한 해석 (Assessment of Recrystallization Behavior in Ingot-Breakdown Process of Alloy 718)

  • 염종택;이종수;김정한;김남용;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.42-45
    • /
    • 2007
  • Recrystallization behavior during ingot-breakdown process of Alloy 718 was investigated with finite element analysis and experimental approaches. In order to analyze microstructural changes during the cogging process of an Alloy 718 ingot, the side-pressing and heat treatment tests were performed at different temperatures and ram speed. From the side-pressing and heat treatment test results, it was found that microstructural changes during hot forging of Alloy 718 ingot greatly influenced on a close interaction between dynamic and static-recrystallization behaviors. A recrystallization model of Alloy 718 was used to predict the complex microstructural variation during continuous heating and forging processes of the cogging, and the predicted grain size and its distribution were compared with the actual cogged Alloy 718 billet.

  • PDF

변형률누적에 의한 결정립미세화를 응용한 압연 패스 스케줄의 설계 (Design of Rolling Pass Schedule utilizing Grain Refinement by Strain Accumulation)

  • 박동진;이상주
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.464-471
    • /
    • 2003
  • Among various methods to acquire high strength in plain carbon steel, the mettled of grain refinement by controlling thermo-mechanical processing parameters has gained a great attention if steel rolling industries. In the present study, three different rolling pass schedules are proposed to obtain fine grains which are based on combined results of recrystallization modelling, finite element analysis and experiment. Since meta-dynamic or dynamic recrystallization has been found to be very effective in producing fine grains, reduction ratio and interpass time in the proposed rolling pass schedules were determined in order to invoke such recrystallization as often as possible.

유한요소법에 의한 열간성형공정에서 강의 미세조직변화 예측 (Prediction of Microstructural Evolution in Hot Forging of Steel by the Finite Element Method)

  • 장용순;고대철;김병민
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.129-138
    • /
    • 1998
  • The objective of this study is to demonstrate the ability of a computer simulation of microstructural evolution in hot forging of C-Mn steels. The development of microstructure is strongly dependent on process variables and metallurgical factors that affect time history of thermodynamical variables such as temperature, strain. and strain rate during deformation. Then finite element method is applied for the prediction of microstructural evolution, and it should be coupled with heat transfer analysis to consider the change of thermodynamical properties during forming process. In this study, Yada's recrystallization model and rigid-thermoviscoplastic finite element method are employed in order to analyze microstructural evolution during hot forging process. To show the validity and effectiveness of the proposed method, experiments are accomplished and the results of experiments are compared with those of simulations.

  • PDF

유한요소법에 의한 열간단조공정에서 강의 미세조직변화 예측 (Prediction of microstructural evloution in hot forging of steel by finite element method)

  • 장용순;고대철;최재찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.219-222
    • /
    • 1995
  • The objective of this study is to demonstrate the ability of a computer simulation of microstructural evolution in hot forging of C-Mn steels. The finite element method is applied to the prediction of the microstructural evolution, and it should be coupled with heat transfer analysis to consider the change of thermomechanical properties during the deformation. In this study, Yada's recrystallization model and rigid-thermoviscoplastic finite element method were employed in order to analyze microstructural evolution during hot forging process. To show the validity and effectveness of the proposed method, the experiment of hot compression process was accomplished and the results of experiment were compared with those of simulation. Consequently, this approach shows a good agreement with experimental results.

  • PDF

3-롤 압연 오스테나이트 결정립도 분포 예측 및 재결정 거동 분석 (Prediction of AGS Distribution and Analysis of Rescrystallization Behavior in 3-roll Mill)

  • 권혁철;김수영;임용택;이영석;우종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.169-172
    • /
    • 2002
  • Recently, the application of 3-roll mill is increasing, because of its flexibility in spread control and stand arrangements due to its compact size. But deformation characteristics and microstructural change in the process is not well known. In this study, austenite grain size (AGS) predictions were made by isothermal FE analyses and a microstructure model available in the literature. From this study, the effect of draught on the AGS characteristics was analyzed based on the divided zones of two major recrystallization behaviors.

  • PDF

열간압출품의 미세조직 균일화를 위한 최적 금형설계 (Optimal Die Design for Uniform Microstructure in Hot Extruded Product)

  • 이상곤;고대철;류경희;이선봉;김병민
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.471-481
    • /
    • 1999
  • The properties of deformed products are generally dependent upon the distribution of microstureture. It is, therefore, necessary to make the distribution of microstureture uniform in order to achieve the best balance of properties in the final product. This is often a demanding task, even for conventional materials. It is become essential to achieving mechanical integrity and a desired combination of microstructure and properties. The objective mechanical integrity and a desired combination of microsttucture and properties. The objective of this study is to design the optimal die profile which can yield more uniform microstructure in hot extruded product. The microstructure evolution, such as dynamic and static recrystallization as well as grain growth, is investigated using the program com-bined with yada and Senuma's empirical equations and rigid-thermoviscoplastic finite element method. The die profile of hot extrusion is represented by Bezier-curve to define all available profile. In order to obtain the optimal die profile which yields uniform microstructure in the product the FPS(Flexible Polyhedron Search) method is applied to the present study. To validate the result of present study the experimental hot extrusion is performed and the result is compared with that of simulation.

  • PDF

304 스테인레스강의 고온소성변형특성에 미치는 정적연화 효과 (Effect of Static Softening on Hot Plastic Deformation Behaviour for 304Stainless Steel)

  • 조상현;김유승;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.185-188
    • /
    • 1997
  • Static restoration during hot interrupted deformation of 304 stainless steel was studied in the temperature range from 900 to 1100$^{\circ}C$ under various strain rate of 0.05∼ 5/sec and pass strain of 1/4∼3 times peak strain. The static restoration was dependent on the pass strain, deformation temperature and strain rate. Fractional softening(FS) values increased with increasing strain rate, deformation temperature and pass strain. Recystallization kinetics was well explained by the Avrami equation and the time for 50% recrystallization was evaluated using equation of t0.5=2.01${\times}$10-10$\varepsilon$-.156$\varepsilon$ -0.81Dexp(196.66/RT)

  • PDF

열간 압연한 AZ31 마그네슘합금 판재의 미세조직 발달에 관한 연구 (A Study on Microstructural Evolution of Hot Rolled AZ31 Magnesium Alloy Sheets)

  • 김수현;임창동;유봉선;서영명;정인상
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.63-71
    • /
    • 2004
  • Recently, a sheet forming process of Mg alloys is highlighted again due to increasing demand for Mg wrought alloys in the applications of casings of mobile electronics and outer-skins of light-weight transportation. Microstructure control is essential for the enhancement of workability and formability of Mg alloy sheets. In this research, AZ31 Mg alloy sheets were prepared by hot rolling process and the rolling condition dependency of the microstructure and texture evolution was studied by employing a conventional rolling mill as well as an asymmetric rolling mill. When rolled through multiple passes with a small reduction per pass, fine-grained and homogeneous microstructure evolved by repetitive dynamic and static recrystallization. With higher rolling temperature, dynamic recrystallization was initiated in lower reduction. However with increasing reduction per pass, deformation was locallized in band-like regions, which provided favorable nucleation sites f3r dynamic recrystallization. Through post annealing process, the microstructures could be transformed to more equiaxed and homogeneous grain structures. Textures of the rolled sheets were characterized by $\{0002\}$ basal plane textures and retained even after post annealing. On the other hand, asymmetrically rolled and subsequently annealed sheets exhibited unique annealing texture, where $\{0002\}$ orientation was rotated to some extent to the rolling direction and its intensity was reduced.

  • PDF

Inconel 706의 열간단조 공정 중 재가열과 변형양에 따른 결정립 미세화에 대한 분석 (Analysis of Microstructural Refinement for Inconel 706 during Hot Forging Process through Reheating and Strain)

  • 성상규;강현준;이영선;이상용;이의종;제환일;신정호;윤은유
    • 소성∙가공
    • /
    • 제32권5호
    • /
    • pp.239-246
    • /
    • 2023
  • To reduce the forming load due to the temperature drop, during the hot forging process, a reheating hot forging process design is required that to repeat heating and forging. However, if the critical strain required for recrystallization is not induced during forging and grain growth becomes dominant due to the reduction in dislocation density due to repeated heating, the mechanical properties may deteriorate. Therefore, in this study, Inconel 706 alloy was applied, and the grain refinement behavior was comparatively analyzed according to the number of reheating times and effective strain during reheating hot forging process. Reheating was carried out with a total compression rate of 40% up to 4 times. The Inconel 706 compression test specimens heated once showed finer grains as the effective strain increased due to the dynamic recrystallization phenomenon. However, as the number of heating increases, grain refinement was observed even in a low effective strain distribution of 0.43 due to static recrystallization during reheating. Moreover, grain growth occurs at a relatively low effective strain of 0.43 when the number of reheating is four or more. Therefore, it was effective to apply an effective strain of 0.43 or more during hot forging to Inconel 706 in order to induce crystallization through grain refinement and improve the properties of forged products. In addition, we could notice that up to three reheating times condition was appropriate to prevent grain growth and maintain fine grain size.

A study on the fatigue strength characteristics of ship structural steel with gusset welds

  • Park, Sung-Jo;Lee, Hyun-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.132-140
    • /
    • 2012
  • This study aims to assess fatigue property by the static overload and average load in the fillet welded joints which is on the ship structural steel having gusset welds. To this end, a small specimen was made, to which the same welding condition for the actual ship structure was applied, to perform fatigue tests. In this study, a method to simply assess changes in welding residual stress according to different static overload was suggested. By measuring actual strain at the weld toe, the weld stress concentration factor and property which is determined by recrystallization in the process of welding were estimated to investigate the relation between overload and fatigue strength.