• Title/Summary/Keyword: Static load

Search Result 2,584, Processing Time 0.038 seconds

Static Load Tests on Flexural Strength and Crack Serviceability of a Longitudinal Joint for the Slab-Type Precast Modular Bridges (슬래브 형식 프리캐스트 모듈러교량 종방향 연결부의 휨강도 및 균열 사용성에 관한 정적재하실험)

  • Lee, Jung-Mi;Lee, Sang-Yoon;Song, Jae-Joon;Park, Kyung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.137-145
    • /
    • 2015
  • The slab-type precast modular bridge consists of the precast slab bridge modules which are connected in the transverse direction. The longitudinal joints between the precast slab bridge modules are filled with cast-in-place mortar. The construction of the slab-type precast modular bridge is completed by applying the prestressing force on the longitudinal joints. In this study, 4-points bending tests and 3-points bending tests were conducted to examine the effects of the prestressing force and the shape of joint on the flexural strength and crack serviceability of longitudinal joint. The results of 4-points bending tests showed that the flexural strength is affected by the prestressing force but not by the shape of join. From the results of 3-points bending tests by which the bending moment and the shear force are simultaneously applied on the joints of the specimens, it is observed that the shape of joint affects on the flexural strength and the crack behavior. The results of two types of bending tests confirmed that the prestressing force according to the design code is appropriate and the joint with two shear keys gives the better performances against the crack of joint.

Effects of Four Sides Constraint for Shear Strength of ${\sharp}$ Shape Double Beam-Column Connections (정(${\sharp}$)자형 더블보-기둥 접합부의 전단강도에 대한 4변 구속의 영향)

  • Kim, Lyang-Woon;Chung, Chang-Yong;Lee, Soo-Kueon;Kim, Sang-Sik;Choi, Kwang-Ho;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.209-212
    • /
    • 2008
  • DBS method of underground works can reduce the term of works for manufacturing the underground members in factory and producing members in modularization, apart from that, the horizontal member could be used as permanent members, which are the advantages of this method. As the component element of DBS method, in order th transfer the vertical load on horizontal member to the column during the construction or in service, developed ${\sharp}$ shaped double beam-column connection is dominated by shear failure in the complicated state of multi-axial stresses. In this study, in order to check the shear-failure mechanism of ${\sharp}$ shaped connection of double beam-column and an increase of shear internal force with the thickness of the steel plate. 7 specimens were made and one-way static tests. All of the specimens were subjected to brittle failure. Constraint of slab will increase its shear strength by 1.06${\sim}$1.48 times. Shear strength of slabs with different constraints steel plate in two-way increase more than which are same. So the slab with different constraints steel plate will be more effective.

  • PDF

Seismic Curvature Ductility of RC Bridge Piers with 2.5 Aspect Ratio (형상비 2.5의 RC 교각의 내진 곡률연성도)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Due to the 1989 Loma Prieta, 1995 Hyogoken Nambu earthquakes, etc, a number of bridge columns  were collapsed in flexure-shear failures as a consequence of the premature termination of the column longitudinal reinforcement. Nevertheless, previous researches for the performance of bridge columns were concentrated on the flexural failure mode. It is well understood that the seismic behaviour of RC bridge piers was dependent on the performance of the plastic hinge of RC bridge piers, the ductility of which was desirable to be computed on the basis of the curvature. Experimental investigation was made to evaluate the variation of the curvature of the plastic hinge  region for the seismic performance of earthquake-damaged RC columns in flexure-shear failure mode. Seven test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading under a constant axial load, $P=0.1f_{ck}A_g$. Residual seismic capacity of damaged specimens was evaluated by analzying the moment-curvature hysteresis and the curvature ductility. Test results show that the biggest curvature was developed around 15cm above the footing, which induced the column failure. It was observed that RC bridge specimens with lap-spliced longitudinal steels appeared to fail at low curvature ductility but significant improvement was made in the curvature ductility of RC specimens with FRP straps wrapped around the plastic hinge region. Based on the experimental variation of the curvature of RC specimens, new equivalent length of the plastic hinge region was proposed by considering the lateral confinement in this study. The analytical and experimental relationship between the displacement and the curvature ductility were compared based on this proposal, which gave excellent result.

A Study on the Design of Amplifier for Source Driver IC applicable to the large TFT-LCD TV (대형 TFT-LCD TV에 적용 가능한 Source Driver IC 감마보정전압 구동용 앰프설계에 관한 연구)

  • Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.51-57
    • /
    • 2010
  • A CMOS rail-to-rail high voltage buffer amplifier is proposed to drive the gamma correction reference voltage of large TFT LCD panels. It is operating by a single supply and only shows current consumption of 0.5mA at 18V power supply voltage. The circuit is designed to drive the gamma correction voltage of 8-bit or 10-bit high resolution TFT LCD panels. The buffer has high slew rate, 0.5mA static current and 1k$\Omega$ resistive and capacitive load driving capability. Also, it offers wide supply range, offset voltages below 50mV at 5mA constant output current, and below 2.5mV input referred offset voltage. To achieve wide-swing input and output dynamic range, current mirrored n-channel differential amplifier, p-channel differential amplifier, a class-AB push-pull output stage and a input level detector using hysteresis comparator are applied. The proposed circuit is realized in a high voltage 0.18um 18V CMOS process technology for display driver IC. The circuit operates at supply voltages from 8V to 18V.

Physical and Mechanical Properties of Synthetic Lightweight Aggregate Concrete (인공경량골재(人工輕量骨材) 콘크리트 물리(物理)·역학적(力學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.182-193
    • /
    • 1997
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. Therefore, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. The main purpose of the work described in this paper were to establish the physical and mechanical properties of synthetic lightweight aggregate concrete using perlite on fine aggregate and expanded clay, pumice stone on coarse aggregate. The test results of this study are summarized that the water-cement ratio was shown 47% using expanded clay, 56% using pumice stone on coarse aggregate, unit weight was shown $l,622kgf/m^3$ using expanded clay, $l,596kgf/m^3$ using pumice stone on coarse aggregate, and the absorption ratio was shown same as 17%. The compressive strength was shown more than $228kgf/cm^2$, tensile and bending strength was more than $27kgf/cm^2$, $58kgf/cm^2$ at all types, and rebound number with schmidt hammer was increased with increase of compressive strength. The static modulus was $1.12{\times}10^5kgf/cm^2$ using expanded clay, $1.09{\times}10^5kgf/cm^2$ using pumice stone on coarse aggregate, and stress-strain curves were shown that increased with increase of stress, and the strain on the maximum stress was shown identical with $2.0{\times}10^{-3}$, approximately.

  • PDF

A Study on Creep Effect of Synthetic Fiber Rope Mooring System on Motion Response of Vessel and Tension of Mooring Line (섬유로프 계류시스템의 크리프 효과가 부유체의 운동응답 및 계류선의 장력 변화에 미치는 영향에 관한 연구)

  • Park, Sung Min;Lee, Seung Jae;Kang, Soo Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.151-160
    • /
    • 2017
  • Growing demand and rapid development of the synthetic fiber rope in mooring system have taken place since it has been used in deep water platform lately. Unlike a chain mooring, synthetic fiber rope composed of lightweight materials such as Polyester(polyethylene terephthalate), HMPE(high modulus polyethylene) and Aramid(aromatic polyamide). Non-linear stiffness and another failure mode are distinct characteristics of synthetic fiber rope when compared to mooring chain. When these ropes are exposed to environmental load for a long time, the length of rope will be increased permanently. This is called 'the creep phenomenon'. Due to the phenomenon, The initial characteristics of mooring systems would be changed because the length and stiffness of the rope have been changed as time goes on. The changed characteristics of fiber rope cause different mooring tension and vessel offset compared to the initial design condition. Commercial mooring analysis software that widely used in industries is unable to take into account this phenomenon automatically. Even though the American Petroleum Institute (API) or other classification rules present some standard or criteria with respect to length and stiffness of a mooring line, simulation guide considers the mechanical properties that is not mentioned in such rules. In this paper, the effect of creep phenomenon in the fiber rope mooring system under specific environment condition is investigated. Desiged mooring system for a Mobile Offshore Drilling Unit(MODU) with HMPE rope which has the highest creep is analyzed in a time domain in order to investigate the effects creep phenomenon to vessel offset and mooring tension. We have developed a new procedure to an analysis of mooring system reflecting the creep phenomenon and it is validated through a time domain simulation using non-linear mooring analysis software, OrcaFlex. The result shows that the creep phenomenon should be considered in analysis procedure because it affects the length and stiffness of synthetic fiber rope in case of high water temperature and permanent mooring system.

THREE DIMENSIONAL PHOTOELASTIC ANALYSIS OF STRESS OF EDENTULOUS MANDIBULE ACCORDING TO VARIOUS RIDGE SHAPES AND ARTIFICIAL TEETH SIZES (잔존치조제 형태 및 총의치 인공치 크기가 무치하악 응력발생에 미치는 영향에 관한 3차원적 광탄성응력분석)

  • Choi Chang-Deog;Yoo Kwong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.457-478
    • /
    • 1992
  • Electrical resistance strain gauges, brittle-coatings, Moir'e fringe analysis, photoelasticity methods, etc, have been employed in the study of stress analysis and three-dimensional photoelasticity method used in this experiment. The author fabricated a total of 24 samples of maxillary and mandibular edentulous ridges with normal and sharp shapes using epoxy resin, one of the photoelastic materials. In addition, complete denture made from artificial resin teeth in other twoo sizes, large and medium size, were affixed to the specimens and attached to an articulator. The following results were attained by cutting 9 slice specimens into 6mm thick portions, in accordance with the three dimensional photoelastic stress freezing method, to analyze stress distribution status under specific static loading in the central, lateral and protrusive occlusions of the shape of edentulous ridge. 1. In the case of central occlusion, when complete resin artificial teeth in large and medium sizes were used on normal and sharp alveolar ridges, high stress distribution was broadly shown in the labio-buccal sides, and low and concentrated in the lingual sides, in all cases. Generally, the highest stresses were shown at the top of the alveolus, or at 2mm below the top of the alveolus, particularly in the specimen 2, 3, and stresses were more or less the same in the symmetrical right and left sides. 2. In the case of lateral occlusion, when the same load was applied, high stresses were shown broadly at the working sides in both the labio-buccal and lingual sides, and low and concentrated at the balanced sides. The highest stresses were shown in the top of the alveolus on the working sides in specimen 2 portion, and the lowest stresses at the balanced sides in specimen 6, slightly higher stresses were shown at retromolar parts in the balanced sides. 3. In the case of protrusive occlusion, high stresses were broadly shown at the labio-buccal sides, and slightly higher stresses at the top 2, 4, and 6mm parts of the alveolus with concentration. The highest stresses were shown in specimen No. 5 and the lowes stresses in specimen 1, 9 and stresses were more of less the same at the symmetrical right and left sides.

  • PDF

Nonlinear Behavior of Seismic-Strengthened Domestic School Building (국내 기존 학교건축물의 내진보강 후 비선형 거동특성)

  • Ryu, Seung Hyun;Yun, Hyun Do;Kim, Sun Woo;Lee, Kang Seok;Kim, Yong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.243-253
    • /
    • 2011
  • This paper describes an analytical study on seismic performance of domestic reinforced concrete (RC) school building not designed by seismic provision. The seismic index and the seismic performance of the building were evaluated through Japanese standard and Midas Gen, respectively. Seismic index (Is) of the RC school buildings in the X-direction is below 0.4. Based on the seismic index, for seismic-strengthening the building, infill shear wall or steel brace with a capacity of 1,300 kN was used. According to nonlinear static analysis results, the contribution of the seismic-strengthening to the shear resistance of the school building was measured to be greater than 30%. However, as expected, shear strength of school building strengthened with infill wall dropt rapidly after peak load and much narrower ductile behavior range was observed compared to steel brace strengthened building. Also, the building strengthened with steel brace showed 30% larger spectral displacement than that strengthened with infill shear wall. In nonlinear dynamic analysis, for the time history analysis, the maximum displacement showed tendency to decrease as amount of reinforcement increased, regardless of strengthening method. It was recommended that variable soil properties and earthquake record should be considered for improving seismic performance of buildings in seismic zone.

Analysis of Apparatus Variables for Deformation Strength Test of Asphalt Concrete Based on Correlation with Rutting and Prediction Model for Rutting (소성변형과의 상관성 및 추정모델을 통한 변형강도 시험장치 변수 분석)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Sung-Tae;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.41-52
    • /
    • 2002
  • This study dealt with analysis of size effect of testing apparatus for Kim test which measures rut resistance characteristics of asphalt mixture under static loading. Two columns in different diameter with each column having different radios of round cut (Curvature) at the bottom were used for testing asphalt mixture. Deformation load ($P_{max}$) and deformation strength ($K_D$) were found to have relatively high correlation with rut depth and dynamic stability of asphalt concrete. Diameter of specimen was not a significant factor in this test. From the statistical correlation analysis with rutting properties, the radius of curvature and diameter of loading column were found to be important factor affecting the results of the test. Among the radios (r) of curvatures, r=0.5cm and 1.0cm showed much higher correlation than the column without curvature, and r=1.0cm being better between the two. The column with diameter of 4cm showed better correlation than diameter of 3cm. Therefore, the column of 4cm diameter with r=1.0cm was found to be the best among various apparatus sizes. Prediction models for rut depth and dynamic stability were developed for each aggregate mixture based on Kim test variables using SAS STEPWISE procedure. Therefore, if this test method is validated through further study, Kim test can be used for selecting asphalt mixture with the highest resistance against permanent deformation.

  • PDF

A Study on Design Optimization of an Axle Spring for Multi-axis Stiffness (다중 축 강성을 위한 축상 스프링 최적설계 연구)

  • Hwang, In-Kyeong;Hur, Hyun-Moo;Kim, Myeong-Jun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2017
  • The primary suspension system of a railway vehicle restrains the wheelset and the bogie, which greatly affects the dynamic characteristics of the vehicle depending on the stiffness in each direction. In order to improve the dynamic characteristics, different stiffness in each direction is required. However, designing different stiffness in each direction is difficult in the case of a general suspension device. To address this, in this paper, an optimization technique is applied to design different stiffness in each direction by using a conical rubber spring. The optimization is performed by using target and analysis RMS values. Lastly, the final model is proposed by complementing the shape of the weak part of the model. An actual model is developed and the reliability of the optimization model is proved on the basis of a deviation average of about 7.7% compared to the target stiffness through a static load test. In addition, the stiffness value is applied to a multibody dynamics model to analyze the stability and curve performance. The critical speed of the improved model was 190km/h, which was faster than the maximum speed of 110km/h. In addition, the steering performance is improved by 34% compared with the conventional model.