• 제목/요약/키워드: Static inverter

검색결과 159건 처리시간 0.023초

Chopper Controller Based DC Voltage Control Strategy for Cascaded Multilevel STATCOM

  • Xiong, Lian-Song;Zhuo, Fang
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.576-588
    • /
    • 2014
  • The superiority of CMI (Cascaded Multilevel Inverter) is unparalleled in high power and high voltage STATCOM (Static Synchronous Compensator). However, the parameters and operating conditions of each individual power unit composing the cascaded STATCOM differ from unit to unit, causing unit voltage disequilibrium on the DC side. This phenomenon seriously impairs the operation performance of STATCOM, and thus maintaining the DC voltage balance and stability becomes critical for cascaded STATCOM. This paper analyzes the case of voltage disequilibrium, combines the operation characteristics of the cascaded STATCOM, and proposes a new DC voltage control scheme with the advantages of good control performance and stability. This hierarchical control method uses software to achieve the total active power control and also uses chopper controllers to enable that the imbalance power can flow among the capacitors in order to keep DC capacitor voltages balance. The operating principle of the chopper controllers is analyzed and the implementation is presented. The major advantages of the proposed control strategy are that the number of PI regulators has been decreased remarkably and accordingly the blindness of system design and debugging also reduces obviously. The simulation reveals that the proposed control scheme can achieve the satisfactory control goals.

2-5kV급 Gate Commutated Thyristor 소자의 제작 특성 (Device characteristics of 2.5kV Gate Commutated Thyristor)

  • 김상철;김형우;서길수;김남균;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.280-283
    • /
    • 2004
  • This paper discribes the design concept, fabrication process and measuring result of 2.5kV Gate Commutated Thyristor devices. Integrated gate commutated thyristors(IGCTs) is the new power semiconductor device used for high power inverter, converter, static var compensator(SVC) etc. Most of the ordinary GTOs(gate turn-off thyristors) are designed as non-punch-through(NPT) concept; i.e. the electric field is reduced to zero within the N-base region. In this paper, we propose transparent anode structure for fast turn-off characteristics. And also, to reach high breakdown voltage, we used 2-stage bevel structure. Bevel angle is very important for high power devices, such as thyristor structure devices. For cathode topology, we designed 430 cathode fingers. Each finger has designed $200{\mu}m$ width and $2600{\mu}m$ length. The breakdown voltage between cathode and anode contact of this fabricated GCT device is 2,715V.

  • PDF

거리를 고려한 Virtual D-STATCOM (Virtual D-STATCOM Considering Distance)

  • 김태훈;오정식;박장현;박태식
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.151-158
    • /
    • 2019
  • 본 논문에서는 태양광 및 풍력 발전소 등에 설치되어 있는 다수의 계통 연계형 인버터를 사용하여 Virtual D-STATCOM을 구성하고, 배전계통의 부하의 무효전력과 배전선로의 거리에 따른 케이블의 무효전력을 보상하여 기존의 단일 대용량 D-STATCOM을 설치하지 않고 변전소 인근의 PCC단의 무효전력을 보상하는 방법을 제시한다. 제안된 방식은 Matlab Simulink 시뮬레이션을 통해 동작원리와 무효전력 보상 성능을 검증하였다.

A PI Control Algorithm with Zero Static Misadjustment for Tracking the Harmonic Current of Three-Level APFs

  • He, Yingjie;Liu, Jinjun;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.175-182
    • /
    • 2014
  • Tracking harmonic current quickly and precisely is one of the keys to designing active power filters (APF). In the past, the current state feedback decoupling PI control was an effective means for three-phase systems in the current control of constant voltage constant frequency inverters and high frequency PWM reversible rectifiers. This paper analyzes in detail the limitation of the conventional PI conditioner in the APF application field and presents a novel PI control method. Canceling the delay of one sampling period and the misadjustment for tracking the harmonic current is the key problem of this PI control. In this PI control, the predictive output current value is obtained by a state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by a repetitive predictor synchronously. The repetitive predictor can achieve better predictions of the harmonic current. By this means, the misadjustment of the conventional PI control for tracking the harmonic current is cancelled. The experiment results with a three-level NPC APF indicate that the steady-state accuracy and dynamic response of this method are satisfying when the proposed control scheme is implemented.

인천 국제공항청사 경전철 도입에 따른 고조파 영향 분석 (Hormonic Evaluation of An Imported IAT(Intra Airport Transit) System in Incheon International Airport)

  • 김진오;송학선
    • 조명전기설비학회논문지
    • /
    • 제20권1호
    • /
    • pp.41-47
    • /
    • 2006
  • 최근 전기철도에 고속화 기술이 적용되고 열차 구동장치 및 제어계통에 전력용 반도체 소자가 사용되고 있으며, 전기철도 구동시스템의 주요 구성장치인 인버터와 컨버터의 동작을 제어하는 전력전자 소자의 이용은 고조파를 발생의 원인이 된다. 이러한 고조파는 통신장해 및 전류, 전압의 전력품질 저하 등 여러 가지 문제를 발생시킨다. 따라서 본 논문에서는 인천 국제공항에 설치되고 있는 경전철 전력설계의 전력시스템 평가 및 개발을 통해 상위 계통에 미치는 영향 및 전력시스템에서 발생할 수 있는 장애 요인을 사전에 예측 계산하여 이에 대한 대책을 마련하여 전력품질 향상에 목적이 있다. 인천 국제공항청사 내의 전력시스템의 전력품질 문제 접근에 있어 경전철이 운행될 경우 발생할 수 있는 여러 문제 중 특히 전압강하 및 전압불평형에 영향을 미치는 고조파 발생에 대해 분석하였다. 고조파 분석은 IEEE 519-1992(IEEE 141-1993과 동일) 기준에 의거하여 행하였다. 또한 인천 공항청사의 운행되는 경전철은 동적 전력시스템 해석 프로그램인 PSCAD/EMTDC 모델링하고 이의 시뮬레이션 결과를 이용하여 고조파 분석을 하였다.

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

가스터빈 기동장치 센서리스 속도제어로직 성능실험 (Performance Test of Sensorless Speed Control Logic for Gas Turbine Starter)

  • 류호선;문주영;이의택;이주현;강윤모;박만기
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.69-75
    • /
    • 2017
  • The gas turbine static starter rotates the stationary synchronous machine by the interaction of the rotor and the stator. The detection from the initial position of the rotor has been an important issue to drive with optimum torque. Previously, the gas turbine starter was used by attaching the encoder to the synchronous machine, but the position and velocity of the rotor have been estimated by sensor-less method until recently due to the difficulty in attaching and detaching and damage caused by the shaft voltage noise. In this paper, Rotor initial(stationary state) position estimation, forced commutation control(speed less than 10%), and natural commutation control(speed more than 10%) method using magnetic flux with integrated terminal voltage were presented and the sensor-less speed control performance was verified. As a result of making and evaluating the 29 kVA synchronous machine and the starting device, the performance of each control mode was satisfactory. Furthermore, the applied technology is expected to be used for the development of the gas turbine starter of tens of MW class and the field application.

Channel and Gate Workfunction-Engineered CNTFETs for Low-Power and High-Speed Logic and Memory Applications

  • Wang, Wei;Xu, Hongsong;Huang, Zhicheng;Zhang, Lu;Wang, Huan;Jiang, Sitao;Xu, Min;Gao, Jian
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권1호
    • /
    • pp.91-105
    • /
    • 2016
  • Carbon Nanotube Field-Effect Transistors (CNTFETs) have been studied as candidates for post Si CMOS owing to the better electrostatic control and high mobility. To enhance the immunity against short - channel effects (SCEs), the novel channel and gate engineered architectures have been proposed to improve CNTFETs performance. This work presents a comprehensive study of the influence of channel and gate engineering on the CNTFET switching, high frequency and circuit level performance of carbon nanotube field-effect transistors (CNTFETs). At device level, the effects of channel and gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. This model is based on two-dimensional non-equilibrium Green's functions (NEGF) solved self - consistently with Poisson's equations. It is revealed that hetero - material - gate and lightly doped drain and source CNTFET (HMG - LDDS - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, improve the switching speed, and is more suitable for use in low power, high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the impact of the channel and gate engineering on basic digital circuits (inverter, static random access memory cell) have been investigated systematically. The performance parameters of circuits have been calculated and the optimum metal gate workfunction combinations of ${\Phi}_{M1}/{\Phi}_{M2}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product (PDP). In addition, we discuss and compare the CNTFET-based circuit designs of various logic gates, including ternary and binary logic. Simulation results indicate that LDDS - HMG - CNTFET circuits with ternary logic gate design have significantly better performance in comparison with other structures.

해상풍력단지 전력계통 연계를 위한 무효전력 최적 보상용량 계산에 관한 연구 (A Study on the Calculation of Optimal Compensation Capacity of Reactive Power for Grid Connection of Offshore Wind Farms)

  • 한성민;박주혁;황창현;문채주
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.65-76
    • /
    • 2024
  • 최근 해상풍력산업이 활성화되면서 기존 화력 발전소 규모의 400MW 급 발전단지들이 개발되고 있다. 재생에너지는 에너지원에 따라 간헐성이 큰 특성이 있고, 최신 재생에너지 발전설비들은 제어기능을 갖는 인버터 기술로 구성되는 특징이 있다. 이러한 재생에너지원의 계통연계 확대에 따라 전력계통 접속을 위한 그리드코드도 점점 구체화되고 있고, 이에 따라 관련 검토도 활발히 진행되고 있다. 본 논문에서는 그리드 코드 준수를 위해 여러 해상풍력 발전단지들을 통합하여 공동접속설비로 접속하는 경우, 최적 무효전력 보상용량 선정 방법에 대해 제안한다. 그리드 코드의 요구조건을 기반으로, 전북 서남해 400MW 풍력발전단지의 무효전력 보상과 과도안정도를 분석한다. 이 분석은 PSS/E를 사용하여 각 터빈 배치안과 케이블 데이터로 발전단지 DB를 구축하고, 내·외부망 케이블의 충전전류에 의한 무효전력과 연계점에서 무효전력 보상용량을 산출한다. 또한 전력계통 DB에 연계해서 정적, 동적 안정도를 고찰한다.