• Title/Summary/Keyword: Static flow rate

Search Result 259, Processing Time 0.023 seconds

Optimal Design for the Rotor Overlap of a Supersonic Impulse Turbine to Improve the Performance (초음속 충동형 터빈 성능개선을 위한 동익 오버랩 최적설계)

  • Cho, Jongjae;Shin, Bong Gun;Kim, Kuisoon;Jeong, Eunhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • In a supersonic turbine, A rotor overlap technique reduced the chance of chocking in the rotor passage, and made the design pressure ratio satisfied. However, the technique also made additional losses, like a pumping loss, expansion loss, etc. Therefore, an approximate optimization technique was appled to find the optimal shape of overlap which maximizes the improvement of the turbine performance. The design variables were shape factors of a rotor overlap. An optimal design for rotor overlap reduces leakage mass flow rate at tip clearance by about 50% and increases about 4% of total-static efficiency compared with the base model. It was found that the most effective design variable is the tip overlap and that the hub overlap size is the lowest.

Combustion Experiments of a High Pressure Liquid Propellant Thrust Chamber (고압 실물형 연소기의 저압 및 설계점 연소시험)

  • Seo Seonghyeon;Han Yeoung-Min;Moon Il-Yoon;Lee Kwang-Jin;Song Joo-Young;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.269-273
    • /
    • 2005
  • A practical, 30-tonf-class fullscale thrust chamber has been combustion tested using real propellants for the first time in the domestic technology scene. The very first combustion test was conducted at a low mass flow rate condition for the preliminary assessment of any problems associated with its function and performance while reducing risks from a high chamber pressure never achieved before. A test for the design condition achieved through a low-pressure stage shows stable characteristics of all the static pressures and thrust. Dynamic pressures measured in the manifolds and the chamber did not reveal any distinct wave coupled to a specific frequency and their intensities reside in the allowable range. Moreover, it is encouraging to find no physical failures with a thrust chamber hardware.

  • PDF

Optimization of Culture Conditions for the Production of Diphtheria Toxin (디프테리아 toxin 생산을 위한 발효조건 최적화)

  • Cho, Min;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.241-247
    • /
    • 1999
  • Experimental studies were carried out to optimize the culture conditions of Corynebacterium diphtheriae for the production of diphtheria toxin. A new media which does not contain any meat digest products was selected. The main ingredient of new medium was enzymatic digests of casein known as NZ-Case. In fermenter experiments, the toxin production was increased with the increase of cell growth. The optimum initial pH of media, air flow rate and agitation speed were 7.0, 0.22, vvm and 400 rpm, respectively. The contents of iron and calcium-phosphate precipitate were important for maximal cell growth and toxin production. The optimum concentration of iron was 0.3 mg/L and calcium-phosphate precipitate could serve in gradual supply of iron to maintain the optimal culture condition which is required for enhanced yield of toxin production. In potency test, the potency of toxoid from fermentor culture was higher than that from static culture. When diphtheria toxin is produced by fermentor culture, it is possible to produce higher levels of toxin and better toxoid quality in terms of safety, yield, productivity and immunity.

  • PDF

Effect of Oil Supply Direction on Power Loss and Bearing Temperature of Elliptical Bearing (오일공급 방향에 따른 타원형 베어링 손실 및 온도 특성)

  • Bang, Kyungbo;Choi, Yonghoon;Cho, Yongju
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.138-145
    • /
    • 2018
  • Elliptical bearings are widely used for large steam turbines owing to their excellent load carrying capacity and good dynamic stability. Power loss in bearings is an extremely important parameter, especially for high turbine capacities. Optimization of operation conditions and design variables such as bearing clearance and bearing length can reduce the power loss in elliptical bearings. Although changes in the oil supply method have served to increase the efficiency of the tilting pad journal bearing, it has not explicitly improved elliptical bearings. In this study, we verify the static characteristics of an elliptical bearing by changing the direction of oil supply. We evaluate the bearing power loss and bearing metal temperature, and compare the bearing performance and reliability in different test cases. The direction of oil supply is $90^{\circ}$ (9 o'clock) and $270^{\circ}$ (3 o'clock) when the rotor rotates in a counterclockwise direction. We use an elliptical bearing with an inner diameter and active length of 220.30 and 110.00 mm, respectively. Bearing power loss and bearing metal temperatures are measured and evaluated by rotor rotational speed, oil flow rate, and bearing load. The results reveal a 20 reduction in the power loss when the direction of oil supply is 90. Furthermore, the oil film on the upper part of the bearing has a high temperature when the direction of oil supply is $90^{\circ}$. In contrast, when the direction of oil supply is $270^{\circ}$, the oil film on the upper part of the bearing is relatively cold.

Effect on Seal Tooth Clearance on Power Loss and Temperature of Tilting Pad Journal Bearing (씰 투스 간극이 틸팅 패드 저어널 베어링 손실과 온도에 미치는 영향)

  • Bang, Kyungbo;Choi, Yonghoon;Cho, Yongju
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.183-190
    • /
    • 2018
  • Tilting pad journal bearing is widely used for steam turbines because of its excellent dynamic stability. As the turbine capacity increases, power loss in the bearings becomes a matter of concern. Power loss in tilting pad journal bearings can be reduced by increasing the bearing clearance and reducing the pad arc length. In this study, the tilting pad journal bearing is tested by changing the seal tooth clearance to verify the static characteristics of the bearing. Bearing power loss and bearing metal temperature are evaluated to compare the bearing's performance and reliability for several test cases. The test bearing is a tilting pad journal bearing with 300.62mm inner diameter and 120.00mm active length. The bearing power loss, its metal temperature, and oil film thickness are measured and evaluated based on the rotor's rotational speed, oil flow rate, and bearing load. Test results show that a tilting pad journal bearing with large seal tooth clearance has 40% lower power loss compared with a bearing with a small seal tooth clearance. As the seal tooth clearance is increased, the power loss of the tilting pad journal bearing decreases. However, with respect to the bearing metal temperatures, a detuning point is observed that makes the minimum bearing metal temperature. Moreover, as the seal tooth clearance is increased, the oil film thickness increases due to high viscosity.

A Study on the Particle Size and Velocity Profile on a Gasoline Port Injector Using a Phase Doppler Particle Analyzers (PDPA) (위상 도플러 입자 분석기(PDPA)를 이용한 가솔린 포트 인젝터의 입자 크기 및 속도 프로파일에 관한 연구)

  • KIM, HYOJIN;JO, HYUN;TONGCHAI, SAKDA;LIM, OCKTACKE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.300-307
    • /
    • 2017
  • This study is to investigate particle size and velocity profile of gasoline port injector using Phase Doppler Particle Analyzer (PDPA). In this experiment, a GV 250 Delphi port injector used for motorcycles was used for liquid injection. The injector consists of four holes and has a static flow rate of 2.13 g/s. The fuel used in the injection was N-heptane, which is similar to gasoline, as an alternative fuel. The test fuel was injected at an atmospheric temperature of $20^{\circ}C$ and an open atmosphere of 1 atm. The injection time was 10 ms and the injection pressure was 3.5 bar in PDPA experiment. The experimental target position was fiexd at 30, 50 and 75 mm from the nozzle tip and data were collected for a total of 10,000 samples. The experimental results show that the length diameter (D10), the Sauter mean diameter ($D_{32}$), and the mean droplet velocity (MDV) are $45-54{\mu}m$, $99-115{\mu}m$ and 15-21 m/s, respectively.

On-line Generation of Three-Dimensional Core Power Distribution Using Incore Detector Signals to Monitor Safety Limits

  • Jang, Jin-Wook;Lee, Ki-Bog;Na, Man-Gyun;Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.528-539
    • /
    • 2004
  • It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the linear power density (LPD) and the departure from nucleate boiling ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER (Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 Cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation.

Comparative study on the performance of Pod type waterjet by experiment and computation

  • Kim, Moon-Chan;Park, Warn-Gyu;Chun, Ho-Hwan;Jung, Un-Hwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • A comparative study between a computation and an experiment has been conducted to predict the performance of a Pod type waterjet for cm amphibious wheeled vehicle. The Pod type waterjet has been chosen on the basis of the required specific speed of more than 2500. As the Pod type waterjet is an extreme type of axial flow type waterjet, theoretical as well as experimental works about Pod type waterjets are very rare. The main purpose of the present study is to validate and compare to the experimental results of the Pod type waterjet with the developed CFD in-house code based on the RANS equations. The developed code has been validated by comparing with the experimental results of the well-known turbine problem. The validation also extended to the flush type waterjet where the pressures along the duct surface and also velocities at nozzle area have been compared with experimental results. The Pod type waterjet has been designed and the performance of the designed waterjet system including duct, impeller and stator was analyzed by the previously mentioned m-house CFD Code. The pressure distributions and limiting streamlines on the blade surfaces were computed to confirm the performance of the designed waterjets. In addition, the torque and momentum were computed to find the entire efficiency and these were compared with the model test results. Measurements were taken of the flow rate at the nozzle exit, static pressure at the various sections along the duct and also the nozzle, revolution of the impeller, torque, thrust and towing forces at various advance speed's for the prediction of performance as well as for comparison with the computations. Based on these measurements, the performance was analyzed according to the ITTC96 standard analysis method. The full-scale effective and the delivered power of the wheeled vehicle were estimated for the prediction of the service speed. This paper emphasizes the confirmation of the ITTC96 analysis method and the developed analysis code for the design and analysis of the Pod type waterjet system.

Development of a New Commercial Grain Cooler (곡물냉각기의 개발)

  • 김동철;김의웅;금동혁;한종규
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.250-256
    • /
    • 2004
  • The objectives of this study were to develop a new commercial grain cooler suited to domestic weather and post-harvesting conditions for paddy, and to evaluate the performance. A prototype grain cooler capable of cooling paddy of 200 tons within 24 hours was developed. The grain cooler was designed to control the refrigeration capacity from 0 to 100% by controlling the capacity of compressor with unloading solenoid valve and by changing the flow rates of hot refrigerant gas flowing into reheater and evaporator from compressor. And a controller with one chip microprocessor was developed to control temperature and relative humidity of cooling air. The maximum cooling capacity of the grain cooler was 35,284㎉/hr at condensing/evaporating pressure of 16.5/3.6 kgf/$\textrm{cm}^2$. Maximum flow rate of cooling air was 120 ㎥/min at static pressure of 279 mmAq. The total maximum required power was 22.8㎾, and total required energy was saved from 26.7 to 33.3% of maximum power depending on operating conditions. The coefficient of performance of refrigeration devices and total coefficient of performance of the grain cooler were 4.71 and 1.8, respectively.

Fish Distribution and Management Strategy for Improve Biodiversity in Created Wetlands Located at Nakdong River Basin (낙동강 신규조성 습지의 어류 분포와 종다양성 증진을 위한 관리방안)

  • Choi, Jong Yun;Kim, Seong-Ki;Park, Jung-Soo;Kim, Jeong-Cheol;Yoon, Jong-Hak
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.274-288
    • /
    • 2018
  • This study investigated the environmental factors and fish assemblage in 42 wetlands between spring and autumn of 2017 to evaluate the fish distribution and deduce the management strategy for improving biodiversity in created wetlands located at the Nakdong River basin. The investigation identified a total of 30 fish species and found that the most of wetlands were dominated by exotic fishes such as Micropterus salmoides and Lepomis macrochirus. Fish species such as Rhinogobius brunneus, Opsariichthys uncirostris amurensis, Zacco platypus were less abundant in the area with high density of Micropterus salmoides (static area) because they preferred the environment with active water flow. The pattern analysis of fish distribution in each wetland using the self-organizing map (SOM) showed a total of 24 variables (14 fish species and 10 environmental variables). The comparison of variables indicated that the distribution of fish species varied according to water depth and plant cover rate and was less affected by water temperature, pH, and dissolved oxygen. The plant cover rate was strongly associated with high fish density and species diversity. However, wetlands with low plant biomass had diversity and density of fish species. The results showed that the microhabitat structure, created by macrophytes, was an important factor in determining the diversity and abundance of fish communities because the different species compositions of macrophytes supported diverse fish species in these habitats. Based on the results of this study, we conclude that macrophytes are the key components of lentic freshwater ecosystem heterogeneity, and the inclusion of diverse plant species in wetland construction or restoration schemes will result in ecologically healthy food webs.