• 제목/요약/키워드: Static deflection method

검색결과 194건 처리시간 0.019초

振動法 에 의한 補强平板 의 剛性測定硏究 (A Study on the Measurement of Rigidities of Stiffened Plates by Vibration Method)

  • 김천욱;남준우;원종진;한승봉
    • 대한기계학회논문집
    • /
    • 제9권2호
    • /
    • pp.174-180
    • /
    • 1985
  • 본 논문에서는 등방성 외팔판의 강성계수 및 공유진동수의 관계로 부터 외팔 보강평판의 강성계수와 고유 진동수와의 관계식을 유도하였으며 고유 진동수를 측정하 여 강성계수를 산정하였다. 위의 강성계수 산정법의 타당성을 입증하기 위하여 외팔 판에 집중하중 작용시 하중, 처짐, 강성계수의 관계식을 유도하고 외팔판 처짐 실험을 하였다. 이론해가 없는 임의보강평판에 대해서도 진동수 측정에 의해 강성계수를 산 정하고, 이를 외팔판 처짐실험에 적용하여 처짐의 이론치와 실험치를 비교 검토하였다.

공작기계구조물의 다단계 최적화에 관한 연구 (A Study on Multiphase Optimization of Machine Tool Structures)

  • 이영우;성활경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.42-45
    • /
    • 2002
  • In this paper, multiphase optimization of machine Tool structure is presented. The final goal is to obtain 1) light weight, 2) statically and dynamically rigid. and 3) thermally stable structure. The entire optimization process is carried out in three phases. In the first phase, multiple static optimization problem with two objective functions is treated using Pareto genetic algorithm. where two objective functions are weight of the structure and static compliance. In the second phase, maximum receptance is minimized using simple genetic algorithm. And the last phase, thermal deflection to moving heat sources is analyzed using Predictor-Corrector Method. The method is applied to a high speed line center design which takes the shape of back-column structure.

  • PDF

Brief and accurate analytical approximations to nonlinear static response of curled cantilever micro beams

  • Sun, Youhong;Yu, Yongping;Liu, Baochang
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.461-472
    • /
    • 2015
  • In this paper, the nonlinear static response of curled cantilever beam actuators subjected to the one-sided electrostatic field is focused on. By assuming the deflection function of electrostatically actuated beam, analytical approximate solutions are established via using Galerkin method to solve the equilibrium equation. The Pull-In voltages which determine the stability of the curled beam actuators are also obtained. These approximate solutions show excellent agreements with numerical solutions obtained by the shooting method and the experimental data for a wide range of beam length. Expressions of these analytical approximate solutions are brief and could easily be used to derive the effects of various physical parameters on MEMS structures.

범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구 (On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads)

  • 이성진;류근;정진희;류솔지
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.

A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load

  • Maximov, J.T.
    • Coupled systems mechanics
    • /
    • 제3권3호
    • /
    • pp.247-265
    • /
    • 2014
  • This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic supports subjected to moving load with variable velocity. A new engineering approach for determination of the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the base of an infinite geometrical absolutely summable series. Generalization of the R. Willis' equation has been carried out: generalized boundary conditions have been introduced; the generalized elastic curve's equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication of the static one with the dynamic coefficient. The developed approach has been compared with a finite element one for a concrete engineering case and thus its authenticity has been proved.

판재성형 정적해석에서 유한요소의 영향에 대한 비교연구 (A Comparative Study on Effect of Finite Element in Static Analysis of Sheet Metal Forming)

  • 윤용석;박종진
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.17-26
    • /
    • 2000
  • A series of parametric study was performed for the investigation on the influence of analysis parameters to the solution behavior in the elastic-plastic-static analysis of several sheet metal forming processes, such as deflection by a point force under plane strain and axisymmetric conditions, plane strain bending by a punch, axisymmetric stretching by a punch, axisymmetric bulging by hydraulic pressure, and axisymmetric deep drawing by a punch. The parameters considered are kind of element, number of elements, integration scheme for elemental equation and friction coefficient. Results obtained for different selections of those parameters were compared with each other, experimental measurements and analytical solution.

  • PDF

커버플레이트를 이용한 다단계 온도프리스트레싱으로 보강된 합성보의 하중-저항성능 분석 (Load-Carrying Capacity Evaluation of the Composite Beam Strengthened by Multi-Stepwise Thermal Prestressing Method Using Cover-Plate)

  • 안진희;정치영;최규태;김상효
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권4호통권56호
    • /
    • pp.159-169
    • /
    • 2009
  • 본 연구는 다단계 온도프리스트레싱 공법으로 보강된 합성보의 하중재하 실험 및 구조해석을 통하여 온도프리스트레싱 공법의 프리스트레스 도입효과와 단면증가효과를 평가하였다. 연구결과 온도프리스트레싱을 이용한 합성보의 보강공법은 온도프리스트레싱에 의한 프리스트레스 도입 뿐 아니라 커버플레이트의 설치에 의한 단면증가로 합성보의 처짐 또한 감소시킬 수 있으므로 합성보의 효율적인 보강공법으로 적용이 가능할 것이다.

신경회로망을 이용한 더블 팬터그래프형 매니퓰레이터의 기구학적 제어 (Kinematic Control of Double Pantograph Type Manipulator Using Neural Network)

  • 김성철;정원지;신중호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.20-24
    • /
    • 1997
  • In general, pantograph type manipulators are used for carrying heavy payloads with positional accuracy. In this paper, a double pantograph type manipulator, activated by two slider joints, is studied for applying to file handing machine in atomic power plant. In order to realize the stable horizontal movement of a heavy fuel rod whit good positional accuracy, methods for allocating slider and finding constant joint rates are proposed. In addition, the static deflection of the proposed mechanism was studied using transfer-stiffness matrix method. A neural network control algorithm which compensates static deflections is explored with computer simulations.

  • PDF

유한요소해석에 의한 플라스틱 스퍼기어의 내구성 향상방안 연구 (On a Method for the Durability Enhancement of Plastic Spur Gear Using Finite Element Analysis)

  • 김충현;안효석;정태형
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.223-230
    • /
    • 2003
  • Stress patterns are created in the plastic spur gear tooth body by introducing a hole or a steel pin to improve stress distribution. Static analysis using finite element method is carried out to show the effect. The result shows that maximum stress as well as tooth tip displacement is dependent on the size and location of a hole or a steel pin. When a hole located on the tooth center line, the maximum static stress level and the tooth tip deflection is always higher than that of a solid gear. But, a considerable reduction in the maximum stress and tooth tip displacement is achieved by insertion of steel pin.

가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계 (Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function)

  • 최영휴;차상민;김태형;박보선;최원선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF