• 제목/요약/키워드: Static collapse test

검색결과 57건 처리시간 0.023초

댐핑재가 도포된 차체 박육부재의 압궤특성 (The Collapse Characteristics of Vehicle Thin-walled Members Coated Damping Material)

  • 송상기;박상규;송찬일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.76-81
    • /
    • 2003
  • The purpose of this study is to analyze the collapse characteristics of widely used spot welded section members coated damping material Y1000 and to develop an analysis method for acquiring exact collapse loads and energy absorption ratio. Hat-shaped thin-walled members have the biggest energy absorbing capacity in a front-end collision. The sections were tested on quasi-static and impact loads. Specimens with two type thickness, width ratio and spot weld pitch on the flange have been tested in impact velocities(6.73n0sec and 7.54n1sec) which imitate a real-life car collision. As a result, it was developed the system for acquiring impact energy absorbing characteristics of structure united thin-walled member and damping materials.

Optimal Placement for FACTS to Improve Static Voltage Stability

  • Gu, Min-Yan;Baek, Young-Sik
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.141-145
    • /
    • 2004
  • FACTS devices, such as the Thyristor Controlled Series Compensator (TCSC) and Static Var Compensators (SVC), can help increase system load margin to improve static voltage stability. In power systems, because of the high cost and the effect value, the optimal placement for FACTS devices must be determined. This paper investigates the use of the series device (SVC) and the parallel device (TCSC) from the point of load margin to increase voltage stability. It considers the sensitivity of load margin to the line reactance and eigenvector of the collapse. The study has been carried out on the IEEE 14 Bus Test System to verify the validity and efficiency of the method. It reveals that incorporation of FACTS devices significantly enhance load margin as well as system stability.

SEISMIC STABILITY OF SATURATED REINFORCED SOIL WALLS

  • Kuwano, Jiro;Izawa, Jun
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.66-71
    • /
    • 2010
  • This paper studies the effect of saturation of backfill on the seismic stability of reinforced soil walls (RSWs) using centrifuge shaking table tests. For comparison, degradation of static stability and seismic stability of a RSW under unsaturated condition was also investigated. Test results showed that the RSW under saturated condition had enough static stability. However, seismic stability of saturated RSW significantly decreased as compared with that under unsaturated condition. The saturated model RSW did not collapse, though it showed large deformation. It maintained sufficient stability after shakings although a clear slip surface appeared in the backfill. Finally, it is discussed how to evaluate residual stability of RSWs damaged by earthquakes with test results and the simple evaluation method proposed by authors.

  • PDF

달착륙선 충격흡수장치용 알루미늄 허니콤의 Crush Strength에 관한 연구 (Study of Crush Strength of Aluminum Honeycomb for Shock Absorber of Lunar Lander)

  • 김신;이혁희;김현덕;박정선;임재혁;황도순
    • 항공우주시스템공학회지
    • /
    • 제4권3호
    • /
    • pp.1-5
    • /
    • 2010
  • Understanding the crushing behaviour of aluminum honeycombs under dynamic loading is useful for crash simulations of vehicles and for design of impacting energy absorbers. In the study of honeycomb crushing under quasi-static, dynamic loading, the most important parameter is crush strength. Crush strength is indicated to energy absorption characteristic of aluminum honeycomb. In this study, Using Finite Element Analysis carried out crush strength of hexagonal aluminum honeycomb then the results was compared with Quasi-static test. Consequently, Crush strength is different in quasi-static loading and dynamic loading about 16%.

  • PDF

계면수 변화에 따른 CFRP/Foam 원형부재의 에너지 흡수특성 (Energy Absorption Characteristics of CFRP/Foam Circular Members according to Interface Number)

  • 최주호;이길성;양인영
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.603-608
    • /
    • 2010
  • In this study, one type of circular shaped composite tube was used, combined with reinforcing foam and without foam. Furthermore, CFRP(Carbon Fiber Reinforced Plastic) circular member manufactured from CFRP prepreg sheet for lightweight design. CFRP is an anisotropic material which is the most widely adapted lightweight structural member. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported in this paper. Test was executed in order to compare the results to the energy absorption and collapse shape. The collapse mode during the failure process were observed and analyzed. The behavior of polymeric foams to the tubes crashworthiness were also investigated. According to the experimental results, specimens filled with foam are higher total energy absorption than the other specimens not filled with the foam.

차체구조용 박육부재의 압궤특성에 관한 연구 (A Study on the Collapse Characteristics of Thin-walled Structural Members for Automobiles Under Axial Compression Load)

  • 김정호;임성훈;양인영
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.1-14
    • /
    • 1997
  • In this paper, collapse test of thin-walled structural member widely used for automobiles is carried out under static compression load to observe the effects of cross- sectional shape and material on the energy absorbing capacity in the viewpoint of cras- hworthiness. Specimens tested consist of two sorts(Aluminium, CFRP) and configur- ations(Circular, Square) with variation in thickness. Also, comparisons of Al circular and square specimens are made to find the influence of difference in shape on the energy absorbing capability according as the thickness of specimen varies.

  • PDF

원전 금속단열재의 구조 건전성 강화를 위한 설계 방안 (Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant)

  • 이성명;어민훈;김승현;장계환
    • 한국안전학회지
    • /
    • 제30권3호
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.

Collapse-resistant performance of a single-story frame assembly and multi-story sub-frame under an internal column-removal scenario

  • Zhong, Wei-hui;Tan, Zheng;Tian, Li-min;Meng, Bao;Zheng, Yu-hui;Daun, Shi-chao
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.663-679
    • /
    • 2021
  • To elucidate the differences in the collapse behavior between a single-story beam-column assembly and multi-story frame, two 1/3-scale two-bay composite frames, including a single-story composite beam-column assembly and a three-story composite sub-frame, were designed and quasi-statically tested. The load-displacement responses, failure modes, and internal force development of the two frames were analyzed and compared in detail. Furthermore, the resistance mechanisms of the two specimens were explored, and the respective contributions of different load-resisting mechanisms to the total resistances were quantitatively separated to gain deeper insights. The experimental tests indicated that Vierendeel action was present in the two-dimensional multi-story frames, which led to an uneven internal force distribution among the three stories. The collapse resistance of TSDWA-3S in the flexural stage was not significantly increased by the structural redundancy provided by the additional story, as compared to that of TSDWA-1S. Although the development of the load response was similar in the two specimens at flexural stage, the collapse mechanisms of the multi-story composite frame were much more complicated than those of the single-story beam-column assembly, and the combined action between stories was critical in determining the internal force redistribution and rebalancing of the remaining structure.

전력 계통 정적 전압 안정도 해석법의 동일 근거에 관한 연구 (A Study on the identical basis of static voltage stability analysis methods in power systems)

  • 문영현;김백;이응혁
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.457-466
    • /
    • 1996
  • The Voltage stability problem has recently been dealt with in the literature from various points of view. The diverse theories have been established in voltage stability analysis because of the complicates of power systems and diverse phenomena of voltage collapse. Through rigorous mathematical operations, this paper shows that all the major methods used in static voltage stability, i.e - Jacobian method, voltage sensitivity method, real and reactive power loss sensitivity method and energy function method - have an identical background in theory. The results from the test in sample systems have shown the validity of this verification. (author). refs., figs., tabs.

  • PDF

Column-loss response of RC beam-column sub-assemblages with different bar-cutoff patterns

  • Tsai, Meng-Hao;Lua, Jun-Kai;Huang, Bo-Hong
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.775-792
    • /
    • 2014
  • Static loading tests were carried out in this study to investigate the effect of bar cutoff on the resistance of RC beam-column sub-assemblages under column loss. Two specimens were designed with continuous main reinforcement. Four others were designed with different types of bar cutoff in the mid-span and/or the beam-end regions. Compressive arch and tensile catenary responses of the specimens under gravitational loading were compared. Test results indicated that those specimens with approximately equal moment strength at the beam ends had similar peak loading resistance in the compressive arch phase but varied resistance degradation in the transition phase because of bar cutoff. The compressive bars terminated at one-third span could help to mitigate the degradation although they had minor contribution to the catenary action. Among those cutoff patterns, the K-type cutoff presented the best strength enhancement. It revealed that it is better to extend the steel bars beyond the mid-span before cutoff for the two-span beams bridging over a column vulnerable to sudden failure. For general cutoff patterns dominated by gravitational and seismic designs, they may be appropriately modified to minimize the influence of bar cutoff on the progressive collapse resistance.