• Title/Summary/Keyword: Static behavior

Search Result 1,865, Processing Time 0.03 seconds

Artificial neural network modeling to predict the flexural behavior of RC beams retrofitted with CFRP modified with carbon nanotubes

  • Almashaqbeh, Hashem K.;Irshidat, Mohammad R.;Najjar, Yacoub;Elmahmoud, Weam
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.209-224
    • /
    • 2022
  • In this paper, the artificial neural network (ANN) is employed to predict the flexural behavior of reinforced concrete (RC) beams retrofitted with carbon fiber/epoxy composites modified by carbon nanotubes (CNTs). Multiple techniques are used to improve the accuracy of the ANN prediction, as the data represents a multivalued function. These techniques include static ANN modeling, ANN modeling with load history, and ANN modeling with double load history. The developed ANN models are used to predict the load-displacement profiles of beams retrofitted with either CFRP or CNTs modified CFRP, flexural capacity, and maximum displacement of the beams. The results demonstrate that the ANN is able to predict the flexural behavior of the retrofitted RC beams as well as the effect of each parameter including the type of the used epoxy and the presence of the CNTs.

Shear behavior of a demountable bolted connector in steel-UHPC lightweight composite structures

  • Gu, Jin-Ben;Wang, Jun-Yan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.551-563
    • /
    • 2022
  • Bolted connector could be an alternative to replace the conventional welded headed stud in steel-ultra high performance concrete (UHPC) lightweight composite structures. In this paper, a novel demountable bolted shear connector, consisting of a high-strength bolt (HSB) and a specially-designed nut which is pre-embedded in a thin UHPC slab, is proposed, which may result in the quick installation and disassembly, due to the mountable, demountable and reusable features. In order to study the shear behavior of the new type of bolted shear connector, static push-out tests were conducted on five groups of the novel demountable bolted shear connector specimens and one group of conventional welded headed stud specimen for comparison. The effect of the bolt shank diameter and aspect ratio of bolt on failure mode, shear stiffness, peak slip at the steel-UHPC interface, shear strength and ductility of novel bolted connectors is investigated. Additionally, design formula for the shear strength is proposed to check the suitability for assessment of the novel demountable bolted shear connectors.

On soil-structure interaction models to simulate free vibrations and behavior under seismic loads of a RC building supported by a particular shallow foundation

  • Soelarso Soelarso;Jean-Louis Batoz;Eduard Antaluca;Fabien Lamarque
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.461-479
    • /
    • 2023
  • The paper deals with the finite element modelling of the free vibration and structural behavior of a particular four-floor reinforced concrete structure subjected to static equivalent seismic loads and supported by a shallow foundation system called SNSF (Spider Net System Footing). The two FE models are a simple 2D Matlab model and a detailed 3D model based on solid elastic elements using Altairworks (Hypermesh and Optistruct). Both models can simulate the soil structure interaction. We concentrate on the behavior of a representative cell involving two columns on five levels. The influence of the boundary conditions on the external vertical planes of the domain are duly studied. The Matlab model appears relevant for a primary estimation of frequencies and stiffness of the whole structure under vertical and lateral loads.

A Study on the Space Environment Improvement of Youth Cultural Center considering Environment Psychology and Behavior - Focus on the Independent Facilities of Seoul Area - (환경심리행태를 고려한 청소년문화의집 공간환경 개선방안에 관한 연구 - 서울 지역 단독형을 중심으로 -)

  • Shin, Mi-Seon;CHoi, Sang-Hun
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.4
    • /
    • pp.77-86
    • /
    • 2012
  • The 5-day schoolweek system at the present has increased spare time of the youth. The society should use this opportunity to lead the youth to grow as a responsible community member as offering them programs to fulfill their desires and potential abilities. The purpose of this study is to have the improvements to give the youth appropriate and comfortable space. As the scope of the study, I selected a total of 5 places as each rating (the best, good, moderate, insufficient) 4 places in the comprehensive assessment conducted by youth facilities association among the independent buildings located in Seoul and 1 place after the assessment. As the methods of the study, with regard to environmental psychology and behavior and Youth cultural center, I investigated them theoretically as literature survey method, organized and analyzed, put them together through facilities research analysis and the survey. The research results are as follows : First, a static individual space should be placed in well accessibility due to high affinity for the facilities. Second, a dynamic individual space needs the place and equipment for physically and mentally healthy leisure culture. Third, a dynamic group space needs to provide ensuring service hours, setting proper size of space, comfortable indoor environment considering the relationship between physical activity and others. Fourth, a static group space needs to vary the programs to develop potential abilities by a variety of experiences to maintain the correlation the layout adjacent to leader's office.

  • PDF

Fatigue Behavior of Concrete Beam Using CFRP Rebar (CFRP 보강근을 이용한 콘크리트 보의 피로거동)

  • Zhang, Pei-Yun;Kim, Okk-Yue;Cui, Xian
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.495-501
    • /
    • 2019
  • Recently, research has been carried out into the use of carbon fiber reinforced polymer (CFRP), which has good tensile strength and corrosion resistance, as an alternative to rebar. But as of yet, the research into fatigue failure of CFRP is insufficient. In this paper, an analysis was performed of the mechanical behavior and failure patterns of CFRP reinforced concrete beams according to static and cyclic loads, in order to evaluate the safety and validity of CFRP rebar as an alternative material for rebar. The cyclic load ranged from 10 % to 70% of the ultimate load, and was loaded at a speed of 3Hz using a sine wave in the form of a three-point loading method. Through the static load test, the maximum load or stiffness of the beam was found to increase remarkably with the increase of the reinforcement, but the fatigue test showed that the number of repetitions decreased and the amount of deflection increased with the increase of the reinforcement.

A Study on the Dynamic Behavior of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 동적 변형 거동에 관한 연구)

  • Seo, Yongseok;Lee, Young-Shin;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.206-216
    • /
    • 2017
  • This paper studies on the dynamic properties of Ti-6Al-4V alloy. After forming the four different micro structures(equiaxed, lamellar, and 2 bimodals) through heat treatments, static and dynamic properties of each structure were investigated quantitatively. Dynamic behaviors of the alloy are observed by the compressive split Hopkinson pressure bar(SHPB) tests. In additon, parameters of Johnson-Cook equation were determined from the SHPB test results. In order to verify the suitability of the parameters, high velocity impact tests were performed and the results were compared with the numerical analysis results. Although the flow stress and the fracture strain of the bimodal structures were higher than those of the equiaxed structure at the static tests, the superior dynamic properties were observed at the equiaxed structure due to the effects of higher maximum flow stress and fracture strain. From the numerical analysis, J-C parameters which are determined on this study describe well the dynamic behavior of Ti-6Al-4V alloy. Experimental and analysis results are consistent with ${\pm}5%$ of an average error.

Performance Based Design of Coupling Beam Considering Probability Distribution of Flexural and Shear Strength (휨강도와 전단강도의 확률분포를 고려한 연결보의 성능기반설계)

  • Kim, Yun-Gon;Cho, Suk-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.509-516
    • /
    • 2013
  • In this paper, performance based design of coupling beam using non-linear static analysis is proposed considering probability distribution of flexural and shear strength in order to develop flexural hinge. This method considers post-yielding behavior of coupling beam and stress redistribution of system. It can verify the reduced effective stiffness to meet the current design requirement based on linear analysis. It also evaluates the lateral displacement under service load (un-factored wind load) properly. In addition, it can optimize the coupled shear wall system by taking stress redistribution between members into account. For a simplified 30-story building, non-linear static (push-over) analysis was performed and the structural behavior was checked at performance point and several displacement steps. Furthermore, system behavior according to the amount of reinforcement and depth of coupling beam was explored and compared each other.

Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges

  • Qi, Jianan;Tang, Yiqun;Cheng, Zhao;Xu, Rui;Wang, Jingquan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.413-421
    • /
    • 2020
  • For steel-concrete girders made composite using shear studs, initial damage on studs induced by weld defect, unexpected overloading, fatigue and others might degrade the service performance and even threaten the structural safety. This paper conducted a numerical study to investigate the static behavior of damaged stud shear connectors that were embedded in ultra high performance concrete (UHPC). Parameters included damage degree and damage location. The material nonlinear behavior was characterized by multi-linear stress-strain relationship and damage plasticity model. The results indicated that the shear strength was not sensitive to the damage degree when the damage occurred at 2/3d (d is the stud diameter) from the stud root. An increased stud area would be engaged in resisting shear force as the distance of damage location from stud root increased and the failure section becomes inclined, resulting in a less reduction in the shear strength and shear stiffness. The reduction factor was proposed to consider the degradation of the shear strength of the damaged stud. The reduction factor can be calculated using two approaches: a linear relationship and a square relationship with the damage degree corresponding to the shear strength dominated by the section area and the nominal diameter of the damaged stud. It was found that the proposed method is preferred to predict the shear strength of a stud with initial damage.

Evaluation on Static Behavior of Long Span Prestressed Concrete Deck (장지간 프리스트레스트 콘크리트 바닥판의 정적 거동 평가)

  • Joo, Sanghoon;Chung, Chulhun;Lee, Hanjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.969-977
    • /
    • 2016
  • In this paper, the static load test of long span PSC deck used in the twin steel plate girder bridge was conducted. To evaluate the structural behavior of long span deck, longitudinally sufficient length of deck is needed, but it is difficult to test the full-scale long span deck due to limit of transportation, setting and laboratory space. Therefore, this study proposed a method to apply longitudinal stiffness of the full-scale deck to the test specimen of longitudinally short length, and it was reinforced with the steel beam. The failure behavior and structural performance of the long span deck were evaluated by the proposed test specimen deck.

Carbon Dioxide-Isopropyl Alcohol System: High Pressure Phase Behavior and Application with SAFT Equation of State (이산화탄소-이소프로필 알코올계: 고압 상거동 및 SAFT 상태방정식 적용)

  • Kwak, Chul;Byun, Hun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.324-329
    • /
    • 1999
  • In this work, high pressure binary phase equilibria data of carbon dioxide and isopropyl alcohol were obtained by experiment. A static type experimental apparatus was made to measure temperature, pressure and phase equilibria composition. The experimental apparatus was tested by comparing the measured phase equilibria data of the carbon dioxide-isopropyl alcohol system at $80^{\circ}C$ with those of Rodosz. The binary phase behavior data of carbon dioxide-isopropyl alcohol system were measured in range of 41 to 133 bar and at temperatures of 40, 60, 80, 100 and $120^{\circ}C$. The solubility of isopropyl alcohol increases as the temperatures increases at constant pressure. Also, these carbon dioxide-alcohol solute system have critical-mixture curves that exhibit maxima in pressure at temperatures between the critical temperatures of carbon dioxide and isopropyl alcohol. The experimental data obtained in this study were modeled using the statistical associating fluid theory(SAFT) equation of state. A good fit of the data was obtained with SAFT using two adjustable parameters for the carbon dioxide-isopropyl alcohol system.

  • PDF