• 제목/요약/키워드: Static behavior

검색결과 1,856건 처리시간 0.025초

이축하중을 받는 SM45C강의 피로균열의 발생과 성장거동 (Behavior of Fatigue Crack Initiation and Growth in SM45C Steel under Biaxial Loading)

  • 김상태;박선홍;권숙인
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.84-90
    • /
    • 2004
  • Fatigue tests were conducted on SM45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading systems, were employed fully-reserved cyclic torsion without a superimposed static tension or compression fully-reserved cyclic torsion with a superimposed static tension and fully-reserved cyclic torsion with a superimposed static compression. The test results showed that a superimposed static tensile mean stress reduced fatigue life however a superimposed static compressive mean stress increased fatigue life. Experimental results indicated that cracks were initiated on planes of maximum shear strain whether or not the mean stresses were superimposed. A biaxial mean stress had an effect on the direction that the cracks nucleated and propagated at stage 1 (mode II).

탄소섬유복합재료의 충격 손상에 따른 파괴 인성과 AE 특성 (Fracture Toughness and AE Behavior of Impact-Damaged CFRP)

  • 이상국;남기우;오세규
    • 비파괴검사학회지
    • /
    • 제17권2호
    • /
    • pp.81-88
    • /
    • 1997
  • 탄소섬유강화복합재료(CFRP) 적층판에 비교적 낮은 에너지의 충격을 주어, 충격에 의해서 손상된 적층판을 사용하여 인장강도, 파괴 인성 및 AE 신호 특성에 미치는 충격 손상의 영향에 대하여 검토하였다. 충격손상재의 인장강도, 파괴 인성 및 AE-event count는 충격 속도와 박리 면적의 증가에 따라서 감소함을 알 수 있었다. 그리고 충격시험시에 발생한 박리 면적은 충격 속도와 비례하였다. 또한 적층 방법에 따른 손상재의 강도비와 파괴 인성비가 달라짐이 확인되어 복합재료의 내충격 설계시 손상량과 손상재의 파괴 인성 및 강도에 대한 정량적 평가를 AE 신호로부터 해석할 수 있음이 확인되었다.

  • PDF

콘 형상 제동장치의 축방향 압축변형에 대한 실험적 연구 (Experimental Study on the Axial Crushing Behavior of Truncated Cone Type Brake Device)

  • 김지철;이학렬;김일수;심우전
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.169-176
    • /
    • 2002
  • Axial crushing behavior of cylindrical shell Is utilized in the braking of the high-velocity impacting object. In this paper, truncated cone shape brake device is introduced. That is, thickness of the shell is increased gradually from the impacting end to the other end. A detailed experimental investigation on the quasi-static axial crushing behavior of truncated cone type brake devices has been performed. Specimens of various shape were tested to check the influence of design parameters such as length, radius, mean thickness, and conical angle of cylinder. Influence of the material properties were also investigated by adopting aluminum, low carbon steel, and stainless steel as constructing materials. By analyzing deformation procedures of the specimens, it is seen that conical angle influence the deformation mode and the sequence of the wrinkles generation. Braking distance and mean braking force of each specimen were predicted based on the crushing load measured from the tests.

  • PDF

Experimental and numerical investigations of the influence of reducing cement by adding waste powder rubber on the impact behavior of concrete

  • Al-Tayeb, Mustafa Maher;Abu Bakar, B.H.;Akil, Hazizan Md.;Ismail, Hanafi
    • Computers and Concrete
    • /
    • 제11권1호
    • /
    • pp.63-73
    • /
    • 2013
  • In this study, the effect of reducing cement by proportional addition of waste powder rubber on the performance of concrete under impact three-point bending loading were investigated experimentally and numerically. Concrete specimens were prepared by adding 5%, 10% and 20 % of rubber powder as filler to the mix and decreasing the same percentage of cement. For each case, three beams of $50mm{\times}100mm{\times}500mm$ were loaded to failure in a drop-weight impact machine by subjecting them to 20 N weight from 300mm height, while another three similar beams were tested under static load. The bending load-displacement behavior was analyzed for the plain and rubberized specimens, under static and impact loads. A three dimensional finite-element method simulation was also performed by using LUSAS V.14 in order to study the impact load-displacement behavior, and the predictions were validated with the experimental results. It was observed that, despite decreasing the cement content, the proportional addition of powder rubber until 10% could yield enhancements in impact tup, inertial load and bending load.

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

Static Structural Analysis on the Mechanical behavior of the KALIMER Fuel Assembly Duct

  • Kim, Kyung-Gun;Lee, Byoung-Oon;Woan Hwang;Kim, Young ll;Kim, Yong su
    • Nuclear Engineering and Technology
    • /
    • 제33권3호
    • /
    • pp.298-306
    • /
    • 2001
  • As fuel burnup proceeds, thermal gradients, differential swelling, and inter-assembly loading may induce assembly duct bowing. Since duct bowing affects the reactivity, such as long or short term power-reactivity-decrement variations, handling problem, caused by top end deflection of the bowed assembly duct, and the integrity of the assembly duct itself. Assembly duct bowing were first observed at EBR-ll in 1965, and then several designs of assembly ducts and core restraint system were used to accommodate this problem. In this study, NUBOW-2D KMOD was used to analyze the bowing behavior of the assembly duct under the KALIMER(Korea Advanced Liquid MEtal Reactor) core restraint system conditions. The mechanical behavior of assembly ducts related to several design parameters are evaluated. ACLP(Above Core Load Pad) positions, the gap distance between the ducts, and the gap distance between the duct and restraint ring were selected as the sensitivity parameter for the evaluation of duct deflection.

  • PDF

집중하중을 받는 일방향 섬유 금속 적층판의 손상 거동 (Damage Behavior of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions)

  • 남현욱;김용환;정성욱;정창규;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.407-412
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subject to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, Acoustic Emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. Cumulative AE counts were well predicted crack initiation and crack propagation and AE amplitude were useful for prediction of damage failure mode. During the matrix cracking, fiber debonding and fiber breakage, AE amplitude has $45{\sim}60dB,\;60{\sim}80dB\;and\;90{\sim}100dB$, respectively.

  • PDF

발수코팅된 표면에서의 수적의 동적 전락거동 (Dynamic Sliding Behavior of Water Droplets on the Coated Hydrophobic Surfaces)

  • 송정환;중도장
    • 한국재료학회지
    • /
    • 제17권11호
    • /
    • pp.569-573
    • /
    • 2007
  • The static and dynamic hydrophobicities of the water droplets placed on a hydrophobic surface coated using a fluoroalkylsilanes monolayer with different molecular chain lengths were investigated through direct observation of the actual droplet motion during the sliding process. The surface roughness of both was found to be less than 1 nm. The static contact angles of the coated FAS-3 and FAS-17 were respectively $80^{\circ}$ and $108^{\circ}$ at $150^{\circ}C$, 1 h. The slope of sliding acceleration against the water droplet mass exhibited an inflection point, thus suggesting the switching of the dominant sliding mode from slipping to rolling. While their sliding angles were similar in value, notable differences were exhibited in terms of their sliding behavior. This can be understood as being due to the contribution of the shear stress difference at the interface between the solid surface and water during the sliding process. These results show that the sliding acceleration of the water droplets depends strongly on the balance between gravitational and retentive forces on the hydrophobic surface.

주기적(週期的) 반복하중(反復荷重)을 받는 벼의 복소탄성율(複素彈性率) (Complex Modulus of Rough Rice Kernel under Cyclic Loading)

  • 김만수;박종민
    • Journal of Biosystems Engineering
    • /
    • 제16권3호
    • /
    • pp.263-271
    • /
    • 1991
  • When grains is subjected to oscillating load, the dynamic viscoelastic behavior of the material will be describe the complex modulus of the material. The complex modulus and therefore the storage modulus, the loss modulus, and the phase angle for the sample should be obtainable with a given static viscoelastic property of the material under static load. The complex relaxation moduli of the rough rice kernel were computed from the Burger's model describing creep behavior of the material which were obtained in the previous study. Also, the effects of cyclic load and moisture content of grain on the dynamic viscoelastic behavior of the samples were analized. The storage modulus of the rough rice kernel slightly increased with the frequency applied but at above the frequency of 0.1 Hz it was nearly constant with the frequency, and the loss modulus of the sample very rapidly decreased with increase in the frequency on those frequency ranges. It was shown that the storage modulus and the loss modulus of the sample increased with decrease in grain moisture content. Effect of grain moisture content on the storage modulus of the sample was highly significant than effect of the frequency applied, but effect of the frequency on the loss modulus of the sample was more significant than effect of grain moisture content.

  • PDF

Experimental investigation of the aeroelastic behavior of a complex prismatic element

  • Nguyen, Cung Huy;Freda, Andrea;Solari, Giovanni;Tubino, Federica
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.683-699
    • /
    • 2015
  • Lighting poles and antenna masts are typically high, slender and light structures. Moreover, they are often characterized by distributed eccentricities that make very complex their shape. Experience teaches that this structural type frequently suffers severe damage and even collapses due to wind actions. To understand and interpret the aerodynamic and aeroelastic behavior of lighting poles and antenna masts, this paper presents the results of static and aeroelastic wind tunnel tests carried out on a complex prismatic element representing a segment of the shaft of such structures. Static tests are aimed at determining the aerodynamic coefficients and the Strouhal number of the test element cross-section; the former are used to evaluate the critical conditions for galloping occurrence based on quasi-steady theory; the latter provides the critical conditions for vortex-induced vibrations. Aeroelastic tests are aimed at reproducing the real behavior of the test element and at verifying the validity and reliability of quasi-steady theory. The galloping hysteresis phenomenon is identified through aeroelastic experiments conducted on increasing and decreasing the mean wind velocity.