• Title/Summary/Keyword: Static behavior

Search Result 1,856, Processing Time 0.029 seconds

Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.69-81
    • /
    • 2023
  • This paper considers a delamination analysis of a statically undetermined inhomogeneous beam structure of rectangular section with viscoelastic behavior under torsion. The beam is built in at its two ends. The beam has two longitudinal inhomogeneous layers with a delamination crack between them. A notch is made in the upper crack arm. The external torsion moment applied on the beam is a function of time. Under these conditions, the beam has one degree of indeterminacy. In order to derive the strain energy release rate, first, the static indeterminacy is resolved. Then the strain energy release rate is obtained by analyzing the balance of the energy with considering the viscoelastic behavior. The strain energy release rate is found also by analyzing the compliance of the beam for checkup. Solution of the strain energy release rate in a beam without a notch in the upper crack arm is derived too. In this case, the beam has two degrees of static indeterminacy (the torsion moment in the upper crack arm is treated as an additional internal redundant unknown). A parametric investigation of the strain energy release rate is carried-out.

Europium-driven Alloy 709 corrosion in static FLiNaK molten salt at 700 ℃

  • Taiqi Yin;Amanda Leong;Jinsuo Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1738-1746
    • /
    • 2024
  • The effect of europium-driven corrosion behavior of Alloy 709 in FLiNaK molten salt was investigated by static immersion tests at 700 ℃. It was found that the corrosion of Alloy 709 increased after the addition of EuF3, even though the standard reduction potential of Eu(III)/Eu(II) was negative than those of Fe(II)/Fe, Ni(II)/Ni and Cr (II)/Cr. The presence of Eu(III) led to deeper corrosion attack layers and more pits on the steel surface in comparison with corrosion in blank FLiNaK. However, the addition of Eu(III) seemed to have a role in reducing surface cracking that was explored in corrosion by blank FLiNaK, which depended on Eu(III) concentration.

Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.493-519
    • /
    • 2018
  • This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete (고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구)

  • 곽계환;박종건
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

Structure Borne Durability Design of a Vehicle Body Structure (차체구조의 구조기인 내구 설계)

  • 김효식;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-121
    • /
    • 2004
  • This paper presents an optimal design method for structure-borne durability of a vehicle body structure. Structure-borne durability design requires a new design that can increase fatigue lives of critical areas in a structure and must prohibit transition phenomenon of critical areas that results from modification of the structure at the same time. Therefore, the optimization problem fur structure-borne durability design are consists of an objective function and design constraints of 2 types; type 1-constraint that increases fatigue lives of the critical areas to the required design limits and type 2-constraint that prohibits transition phenomenon of critical areas. The durability design problem is generally dynamic because a designer must consider the dynamic behavior such as fatigue analyses according to the structure modification during the optimal design process. This design scheme, however, requires such high computational cost that the design method cannot be applicable. For the purpose of efficiency of the durability design, we presents a method which carry out the equivalent static design problem instead of the dynamic one. In the proposed method, dynamic design constraints for fatigue life, are replaced to the equivalent static design constraints for stress/strain coefficients. The equivalent static design constraints are computed from static or eigen-value analyses. We carry out an optimal design for structure-borne durability of the newly developed bus and verify the effectiveness of the proposed method by examination of the result.

The Prediction of Injection Distances for the Minimization of the Pressure Drop by Empirical Static Model in a Pulse Air Jet Bag Filter (충격기류식 여과집진기에서 경험모델을 이용한 최소압력손실의 분사거리 예측)

  • Suh, Jeong-Min;Park, Jeong-Ho;Lim, Woo-Taik
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.25-34
    • /
    • 2011
  • The new empirical static model was constructed on the basis of dimension analysis to predict the pressure drop according to the operating conditions. The empirical static model consists of the initial pressure drop term (${\Delta}P_{initial}$) and the dust mass number term($N_{dust}=\frac{{\omega}_0{\nu}_f}{P_{pulse}t}$), and two parameters (dust deposit resistance and exponent of dust mass number) have been estimated from experimental data. The optimum injection distance was identified in the 64 experimental data at the fixed filtration velocity and pulse pressure. The dust deposit resistance ($K_d$), one of the empirical static model parameters got the minimum value at d=0.11m, at which the total pressure drop was minimized. The exponent of dust mass number was interpreted as the elasticity of pressure drop to the dust mass number. The elasticity of the unimodal behavior had also a maximum value at d=0.11m, at which the pressure drop increased most rapidly with the dust mass number. Additionally, the correlation coefficient for the new empirical static model was 0.914.

Study on the Static and Dynamic Structural Analysis Procedure of Excavators (굴삭기의 정적/동적 강도 해석법에 대한 연구)

  • Choung, Joon-Mo;Kim, Gyu-Sung;Jang, Young-Sik;Choe, Ick-Hung;Heo, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.537-543
    • /
    • 2003
  • This paper presents the improved procedure to assess static and dynamic strength of crawler type excavators. A fully integrated model including front attachment and chassis was prepared for structural analysis. In this paper, two types of loading input methods were investigated and the method imposing digging force directly on bucket tooth was more convenient than imposing cylinder reaction force on cylinder pin even if the two methods showed no discrepancy in analysis results. Static strength analysis was carried out for eight analysis scenarios based on two extreme digging positions, maximum digging reach position and maximum digging force positions. The results from static strength analysis were compared with measured stresses, cylinder pressures and digging forces and showed a good quantitative agreement with measured data. Dynamic strength analysis was carried out for simple reciprocation of boom cylinders. It was recognized that the effect of compressive stiffness of hydraulic oil was very important for dynamic structural behavior. The results from dynamic strength analysis including hydraulic oil stiffness were also compared with measured acceleration data and showed a qualitative agreement with measured data.

  • PDF

Quasi-static Characteristics in Radial Direction of 100 kWh Class Superconductor Bearing (100 kWh급 초전도 베어링의 지름방향 준정적 특성)

  • Jung, S.Y.;Park, B.J.;Han, Y.H.;Park, B.C.;Lee, J.P.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. Many aspects of the quasi-static behavior of flywheel rotors still need to be studied closely, and the rotors require a stable and highly efficient supporting system such as high temperature superconductor (HTS) bearings, which offer dynamic stability without the use of active control. Quasi-static properties of HTS bearings in the radial direction provide data to solve problems which may occur in a running system. Since stiffness in countering rotor vibration is the main parameter for designing an HTS bearing system, we investigated the quasi-static properties of the magnetic force between permanent magnets(PMs) and HTS bulks in the radial direction. We measured radial stiffness, and discovered that bearing stiffness varied greatly depending on the number of active HTS bulks. This is valuable data for predicting the change in stiffness during partial HTS bearing failure. The quasi-static test results are used for optimal design and performance prediction for the 100 kWh class superconductor bearing.

Detection of Manufacturing Defects in Stiffness of CFTA Girder using Static Loading (정적 시험을 사용한 CFTA거더의 제조시 강성 결함 탐색)

  • Kim, Doo-Kie;Alfahdawi, Nathem;Cui, Jintao;Park, Kyung-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.109-116
    • /
    • 2012
  • This paper presents a study on the nonlinear behavior of an innovative bridge girder made from concrete-filled and tied tubular steel arch (CFTA) under static loading. Manufacturing of the CFTA girder may have defects which may highly affect the symmetry and performance of the structure. A simple method is proposed by using stiffness extracted from static test data to detect manufacturing defects of the CFTA girder. A three-dimensional finite element model was used in the numerical analysis in order to verify the method. The proposed method was experimentally validated through static tests of the CFTA girder. The application of the proposed method showed that it is effective in identifying invisible manufacturing defects of the CFTA girder, especially for mass production of a standard type in the factory.

Elevated Temperature Static Fatigue in Silicon Nitride (질화규소의 고온정피로거동)

  • Choi, Guen;Choi, Bae-Ho;Kim, Ki-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.15-20
    • /
    • 1999
  • Elevated temperature static fatigue behavior of silicon has been investigated by stress intensity/life test method. Static fatigue crack growth rate increase with the increase of temperature. Such tendency is found to be mainly related to the decrease of fracture toughness with the increase of temperature. That is, when static fatigue crack growth rate, da/dt is expressed by da/dt=AK1m, a constant A is a function of fracture toughness Kc and the exponent m is a constant which is independent of temperature or Kc. However, in the case of high temperature that glass phase is softened, the crack growth rate is found to be deviated from the above relation. This reason is, thus, discussed.

  • PDF