• Title/Summary/Keyword: Static behavior

Search Result 1,865, Processing Time 0.027 seconds

An Experimental Study on the Fatigue Behavior of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 피로거동에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.459-465
    • /
    • 2016
  • In this paper, it was performed the fatigue test to examine the effect of cyclic loading for the simple T-joint. Axial force of bolt by clamping and the change of the force by applied load were measured in the joint. And the bolt force, the failure mode and the fatigue strength under cyclic loading were investigated. The parameters of the tension joint were set to be the flange thickness and the diameter of bolt to a different stiffness of the joint in response to the combination. From the fatigue test, failure mode of tensile joints under cyclic loading could be evaluated using a static ultimate load of the specific failure mode in EC3. The fatigue strength of the tension joints was considerably higher than the fatigue strength of the EC3(36) that does not consider a lever action. However, the additional axial force by lever action occurs to an increase in the axial force of the bolt it requires a careful evaluation of the fatigue strength.

Density Effect on Suction Stress Characteristics of Compacted Weathered Gneiss Soils (편마풍화토의 다짐밀도에 따른 불포화 흡수응력 특성)

  • Park, Seong-Wan;Kim, Byeong-Su;Kwon, Hong-Gi;Lim, Jae-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.15-25
    • /
    • 2013
  • In order to examine the unsaturated shear strength characteristics of compacted weathered gneiss soils, the constant water content compression (CWCC) test was carried out. Specimens were made by static compaction under two densities conditions. The shear behavior in accordance with an initial suction obtained by varying initial degrees of saturation was evaluated. The suction could be directly measured by the use of the ceramic disk and the pore-water pressure transducer. The results of the peak shear strength from the CWCC test were examined using the relationship with Mp line from triaxial test under the saturated state, that is, by means of the suction stress which was calculated using the measured suction. In addition, the applicability of the suctions stress to the unsaturated shear behaviour of compacted weathered gneiss soils was discussed by applying Suction stress-SWCC Method (SSM).

POLARIZATION OF LYMAN α EMERGENT FROM A THICK SLAB OF NEUTRAL HYDROGEN

  • AHN, SANG-HTEON;LEE, HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • Star forming galaxies found in the early universe exhibit asymmetric Lyα emission line that results from multiple scattering in a neutral thick medium surrounding the Lyα emission source. It is expected that emergent Lyα will be significantly polarized through a large number of resonance scattering events followed by a number of successive wing scatterings. In this study we adopt a Monte Carlo method to calculate the polarization of Lyα transferred in a very thick static slab of HI. Resonantly scattered radiation associated with transitions between is only weakly polarized and therefore linear polarization of the emergent Lyα is mainly dependent on the number of off-resonant wing scattering events. The number of wing scattering events just before escape from the slab is determined by the product of the Doppler parameter a and the line center optical depth τ0, which, in turn, determines the behavior of the linear polarization of Lyα. This result is analogous to the study of polarized radiative transfer of Thomson scattered photons in an electron slab, where the emergent photons are polarized in the direction perpendicular to the slab when the scattering optical depth is small and polarized in the parallel direction when the slab is optically thick. Our simulated spectropolarimetry of Lyα shows that the line center is negligibly polarized, the near wing parts polarized in the direction parallel to the slab and the far wing parts are polarized in the direction perpendicular to the slab. We emphasize that the flip of polarization direction in the wing parts of Lyα naturally reflects the diffusive nature of the Lyα transfer process in thick neutral media.

Flexural Crack for Fiber-Reinforced-Polymer Reinforced Concrete Beams (GFRP 보강근 콘크리트 보의 휨균열)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.273-276
    • /
    • 2008
  • The use of FRP(Fiber Reinforced Polymer) bars to replace conventional steel bars in reinforcing concrete structures is currently encouraged by many structural engineers, especially for their noncorrosive properties. The partial inferiority of the bond and mechanical properties for FRP bars, however, leads to wider and deeper cracks compared with those of steel reinforced concrete structures. This paper presents experimental results of concrete beams reinforced with FRP bars tested under static loading conditions up to failure. The study focuses on the effects of the reinforcement ratio on the behavior of concrete beams at various stages during loading. The study also attempts to establish a theoretical basis for the development of simple and rational design procedures for concrete beams reinforced with FRP bars.

  • PDF

Side Shear Resistance of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh-Sung;Kim, Byung-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.611-618
    • /
    • 2005
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into weathered rock was investigated. For that, a database of 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were socketed into weathered igneous/meta-igneous rock at four different sites. The static axial load tests were performed to examine the resistant behavior of the piles, and a comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. No correlation was found between the compressive strengths of intact rock and the side shear resistance of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. $E_m,\;E_{ur},\;_{plm}$, RMR, RQD, j) was found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.7 in most cases. Additionally, the applicability of existing methods for the side shear resistance of piles in rock was verified by comparison with the field test data. The existing empirical relations between the compressive strength of intact rock and the side shear resistance(Horvath (1982), Rowe & Armitage(1987) etc.) appeared to overestimated the side shear resistance of all piles tested in this research unless additional consideration on the effect of rock mass weathering or fracturing was applied. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.1, and RQD is below 50%.

  • PDF

Behavior of Steel-Concrete Composite Decks for PSC Girder Bridge with Various Shear Span Lengths (전단 지간의 변화에 따른 PSC 거더용 강-콘크리트 합성 바닥판의 역학적 거동)

  • Kim, Tae-Hyup;Park, Jun-Myung;Hong, Sung-Nam;Park, Sun-Kyu;Kim, Hyeong-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • Recently, steel-concrete composite structures are widely used in bridge and building constructions. In this paper, a new type of steel-concrete composite deck with profiled steel sheeting is proposed to replace the conventional cast-in-place reinforced concrete deck. Perfobond rib shear connectors were utilized to provide horizontal shear resistance between the profiled sheeting and the concrete. To validate the effectiveness of the proposed deck system, 8 full-scale deck specimens for PSC girder bridge were fabricated. The specimens were tested with four different shear span lengths to determine the horizontal shear resistance of the deck under a static monotonic loading. For comparison purpose, two reinforced concrete decks were also fabricated and tested. The horizontal shear resistance of the proposed deck system was calculated using the m-k method.

Evaluation and Application of Dynamic Soil Properties for SSI Analysis (지반-구조물 상호작용해석시 동적지반특성의 평가 및 적용)

  • Lee, Myung Jae;Shin, Jong Ho;Chon, Chun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.103-112
    • /
    • 1990
  • This study examines the characteristics of soil behavior which includes many uncertainties in seismic design, evaluates the dynamic soil properties and studies the soil-structure interaction to generalize the applicability and economy of the available sites. An example analysis is performed for soil-structure system response assuming a containment structure built on site which includes soil layers using both elastic halfspace analysis and FEM analysis against the seismic loads from the actual design. This exercise is performed as a part of the safety analysis and economic assessment of the nuclear power plant built on soils. It includes the preparation of computer program capable of incorporating large nonlinearity in the analysis, resonable evaluation procedures to determine input soil data. Nonlinear FEM analysis of Seed and Idriss model is found suitable for the accurate analysis of dynamic response of soils. Linear FEM analysis using dynamic soil properties at strain level obtained by one-dimensional seismic response, and elastic half-space analysis using dynamic soil properties at strain level under static loads are recommended to evaluate the dynamic soil properties.

  • PDF

Dynamic Material Property of the Sinter-Forged Cu-Cr Alloys with the Variation of Chrome Content (구리-크롬 소결단조 합금의 크롬 함유량 변화에 따른 동적 물성특성)

  • Song Jung-Han;Huh Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.670-677
    • /
    • 2006
  • Vacuum interrupters are used in various switch-gear components such as circuit breakers, distribution switches, contactors. The electrodes of a vacuum interrupter are manufactured of sinter-forged Cu-Cr material for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain-rate at the given velocity, the dynamic material property of the sinter-forged Cu-Cr alloy is important to design the vacuum interrupter reliably and to identify the impact characteristics of a vacuum interrupter accurately. This paper is concerned with the dynamic material properties of sinter-forged Cu-Cr alloy for various strain rates. The amount of chrome is varied from 10 wt% to 30 wt% in order to investigate the influence of the chrome content on the dynamic material property. The high speed tensile test machine is utilized in order to identify the dynamic property of the Cu-Cr alloy at the intermediate strain-rate and the split Hopkinson pressure bar is used at the high strain-rate. Experimental results from both the quasi-static and the high strain-rate up to the 5000/sec are interpolated with respect to the amount of chrome in order to construct the Johnson-Cook and the modified Johnson-Cook model as the constitutive relation that should be applied to numerical simulation of the impact behavior of electrodes.

A Clinical Approach of Supine & Prone Progression from Supine to Standing Position in PNF (고유수용성 신경근촉진법의 앙와위와 복와위로부터 입위로 진행 발전시키는 임상적 접근)

  • Bae Sung-Soo;Kwon Mi-Ji;Kim Soo-Min
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.2
    • /
    • pp.51-59
    • /
    • 1999
  • Standing up from a supine and prone position is very important for physical independence. All kinds of patients have a bed rest or lying on floor without special care. Even though the patient had complete from illness. He must train the functional activities before discharge. There are many method for the functional activity training. Likewise, sing of reflex, voluntary movement for muscle strength increasing, but clinically ideal method is approaching with motor developmental stage. Supine and prone progression of proprioceptive neuromuscular facilitation have a ideal reason. That is reflex integratation, development of muscle tone, develop of motor control, dynamic and static, motor behavior and cognition.

  • PDF

Numerical investigation seismic performance of rigid skewed beam-to-column connection with reduced beam section

  • Zareia, Ali;Vaghefi, Mohammad;Fiouz, Ali R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.507-528
    • /
    • 2016
  • Reduced beam section (RBS) moment resisting connections are among the most economical and practical rigid steel connections developed in the aftermath of the 1994 Northridge and the 1995 Kobe earthquakes. Although the performance of RBS connection has been widely studied, this connection has not been subject to in the skewed conditions. In this study, the seismic performance of dogbone connection was investigated at different angles. The Commercial ABAQUS software was used to simulate the samples. The numerical results are first compared with experimental results to verify the accuracy. Nonlinear static analysis with von Mises yield criterion materials and the finite elements method were used to analyze the behavior of the samples The selected Hardening Strain of materials at cyclic loading and monotonic loading were kinematics and isotropic respectively The results show that in addition to reverse twisting of columns, change in beam angle relative to the central axis of the column has little impact on hysteresis response of samples. Any increase in the angle, leads to increased non-elastic resistance. As for Weak panel zone, with increase of the angle between the beam and the column, the initial submission will take place at a later time and at a larger rotation angle in the panel zone and this represents reduced amount of perpendicular force exerted on the column flange. In balanced and strong panel zones, with increase in the angle between the beam and the central axis of the column, the reduced beam section (RBS), reaches the failure limit faster and at a lower rotation angle. In connection of skewed beam, balanced panel zone, due to its good performance in disposition of plasticity process away from connection points and high energy absorption, is the best choice for panel zone. The ratio of maximum moment developed on the column was found to be within 0.84 to 1 plastic anchor point, which shows prevention of brittle fracture in connections.