• 제목/요약/키워드: Static and fatigue behavior

검색결과 179건 처리시간 0.03초

철도하중에 대한 철근 콘크리트와 강섬유 보강 철근 콘크리트 전단이음부의 피로거동에 관한 실험적 연구 (Study on the Fatigue Behavior of a Joint between RC and SFRC Subjected to Shear)

  • 강보순
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.194-202
    • /
    • 2000
  • Fatigue behavior of shear joints between the combined reinforced concrete(RC) and the reinforced steel fiber concrete(SFRC) specimens has been experimentally investigated. Experimental parameters used are the amount of steel fiber and the type of shear joint. Six specimens have been tested under static load, and eight specimens have been subjected to the fatigue load in a range of 50 % and 5 % of the ultimate static load. The purpose of this research is to propose an empirical formula for fatigue shear behavior of the combined RC and SFRC structures on the basis of experimental result. It can be observed from experimental results that addition of steel fibers to concrete specimen increases the static ultimate load by approximately 25 %, enhances the fatigue behavior, and also reduces vertical and lateral displacements at the shear joint for a given load cycle after the occurrence of first crack.

  • PDF

H형 복공판과 Channel형 복공판의 정적해석 및 피로거동에 관한 실험적 연구 (An Experimental Study on the Static and Fatigue Behavior of H & Channel-Type Lining Board)

  • 김두환;이승수;박대열;이태수
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2003년도 춘계 학술논문발표회 논문집
    • /
    • pp.508-513
    • /
    • 2003
  • The objective of this paper is to investigate the lining board's capacity by using the static loading test and fatigue test. Specimens that constitute the H & Channel type lining board are adopted. The test is to inspect the possibility of retrofit and efficiency, which is required to upgrade the structure's capacity and to examine the effects of the improvements of specimen by using structural analysis, stress analysis, static loading test and fatigue test, respectively. The accumulated test results of stress condition and deflection by bending will be used to analyze the relation between the cause of fatigue crack occurrence and the behavior of both structure system and the steel.

  • PDF

강섬유 보강 철근콘크리트 전단이음부의 피로거동에 대한 실험적 연구 (A Experimental Study on Fatigue Behavior of Joints between RC and RSFC subjected to shear)

  • 강보순
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.389-396
    • /
    • 2000
  • Fatigue behavior of shear joints between combined reinforced concrete(RC) and reinforced steel fiber concrete(RSFC) specimens has been experimentally investigated. Experimental parameters used are the amount of steel fiber and the type of shear joint. 6 specimens have been tested under static load, and 8 specimens have been subjected to the fatigue load in a range of 50% and 5 % of the ultimate static load. The purpose of this research is to propose an empirical formula for fatigue shear behavior of combined RC and RSFC structures on the basic of experimental result. It can be observed from experimental result that addition of steel fibers to concrete specimen increases the static ultimate load by approximately 25%, enhances the fatigue behavior, and also reduces vertical and lateral displacements at the shear joint for a given load cycle after the occurrence of first crack.

  • PDF

피로효과를 고려한 레일패드 스프링계수 변화에 따른 콘크리트 슬래브 궤도의 거동분석 (A Behavior Analysis of HSR concrete slab track under Variety of Rail pad stiffness on fatigue effect)

  • 엄맥;최정열;천대성;박용걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.340-350
    • /
    • 2007
  • The major objective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect(hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete slab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

Shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading

  • Kwak, Kae-Hwan;Park, Jong-Gun
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.301-314
    • /
    • 2001
  • The purpose of this experimental study is to investigate the damage mechanism due to shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading. The relationship between the number of cycles and the deflection or strain, the crack growths and modes of failure with the increase of number of cycles, fatigue strength, and S-N curve were observed through a fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed at 57-66 percent of static ultimate strength for 2 million cycles. The fatigue strength at 2 million cycles from S-N curves was shown as about 60 percent of static ultimate strength. Compared to normal-strength reinforced concrete beams, fatigue capacity of high-strength reinforced concrete beams was similar to or lower than fatigue capacity of normal-strength reinforced concrete beams. Fatigue capacity of normal-strength reinforced concrete beams improved by over 60 percent.

피로효과를 고려한 레일패드의 정적스프링계수 변화에 따른 콘크리트 슬래브 제도의 거동분석 (A Behavior Analysis of HSR Concrete Slab Track under Variety of Rail Pad Static Stiffness on Fatigue Effect)

  • 박용걸;강기동;최정열
    • 한국철도학회논문집
    • /
    • 제10권5호
    • /
    • pp.499-505
    • /
    • 2007
  • 본 연구의 주목적은 고속선 콘크리트 슬래브 궤도시스템에서 레일패드의 피로효과에 따른 영향을 분석하는 데에 있다. 이에 3차원 해석모델 및 실내시험을 통해 도출된 레일패드의 피로효과(경화, 스프링계수 증가)가 고속선 궤도의 역학적 거동에 미치는 영향을 분석하였다. 본 연구에서는 콘크리트 슬래브 궤도의 적정 탄성력 확보여부를 의미하는 레일패드의 적정스프링계수 산정에 관한 연구의 일환으로 고속철도 콘크리트 슬래브 궤도에 적용된 레일체결시스템에 대한 실내시험을 통한 레일패드의 정적스프링계수를 산정하고 체결시스템에 대한 피로시험을 통해 도출된 피로효과가 고려된 레일패드의 스프링계수 변화를 해석모델에 적용함으로써 향후 고속선 콘크리트 슬래브 궤도운영에서의 열차 주행안정성 확보 및 합리적인 궤도유지관리를 위한 기초데이터를 확보하고자 한다.

반복하중하에서 강섬유보강 철근콘크리트 연속보의 피로거동 (Fatigue Behavior of Steel Fiber Reinforced Concrete Continuous Beams under Cyclic Loading)

  • 곽계환;박종건;장화섭
    • 한국농공학회논문집
    • /
    • 제46권6호
    • /
    • pp.47-58
    • /
    • 2004
  • As concrete structures are getting larger, higher, longer and more specialized, it is more required to develop steel fiber concrete and apply to the real world. In this research, it is aimed to have fatigue strength examined, varying the steel fiber content of 0%, 0.75%, 1.00%, 1.25% by experimental study of fatigue behavior of the steel fiber reinforced concrete continuous beams under cyclic loading. The ultimate load and initial load of flexural cracking were measured by static test. In addition, the load versus strain relation, load versus deflection relation, crack pattern and fracture mode by increasing weight were observed. On the other hand, the crack propagation and the modes of fracture according to cycle number and the relation of cyclic loading to deflection relation and strain relation were investigated by fatigue test. As the result of fatigue test, continuous beam without steel fiber was failed at 60 ~ 70% of The static ultimate strength and it could be concluded that fatigue strength to two million cyclic loading was arround 67.2% by S-N curve. On the other hand, that with steel fiber was failed at 65 ~ 85% of the static ultimate strength and it could be concluded fatigue strength to two million cyclic loading around 71.7%.

이축 정적 하중이 부가된 반복 인장 혹은 비틀림 하중하에서 균열 발생과 성장 거동 (Behavior of Fatigue Crack Initiation and Propagation under Cyclic Tensile or Torsional Loading with Superimposed Static Biaxial Load)

  • 허용학;박휘립;권일범;김진영
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1446-1455
    • /
    • 2000
  • Fatigue crack initiation and propagation behavior under cyclic biaxial loading has been investigated using thin-walled tubular specimen with a hole. Two types of biaxial loading system, i.e. cyclic tensile loading with super-imposed static torsional load and cyclic torsional loading with superimposed static tensile load, with various values of the biaxial loading ratio, $\tau$ s/ $\sigma$ max (or $\tau$ max/ $\sigma$s) were employed. Fatigue tests show that fatigue crack near the hole initiates and propagates at 900 and 450 direction to the longitudinal direction of the specimen under cyclic tensile and torsion loading with static biaxial stress, respectively, and the static biaxial stress doesn't have any great influence on fatigue crack initiation and growth direction. Stress analysis near the hole of the specimen shows that the crack around the hole initiates along the plane of maximum tangential stress range. Fatigue crack growth rates were evaluated as functions of equivalent stress intensity factor range, strain energy density factor range and crack tip opening displacement vector, respectively. It is shown that the biaxial mode fatigue crack growth rates can be relatively consistently predicted with these cyclic parameters.

고강도 철근콘크리트 보의 피로거동에 관한 실험적 연구 (An Experimental Study on Fatigue Behavior of High Strength Reinforced Concrete Beams)

  • 임채영;박종건;곽계환
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.113-118
    • /
    • 1998
  • The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57 ~ 66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

  • PDF

유리섬유보강재로 외부부착 보강된 교량 바닥판의 구조거동 (Structural Behavior on the Externally Strengthened Bridge Deck with Glass Fiber Reinforced Polymer)

  • 오홍섭;심종성;최장환
    • 콘크리트학회논문집
    • /
    • 제14권6호
    • /
    • pp.922-933
    • /
    • 2002
  • 교량바닥판의 손상이 구조물의 내구성, 안전성 및 기능에 영향을 미치기 때문에 손상된 바닥판의 성능향상을 위하여 섬유보강재를 사용한 구조물보강 사례가 증가하고 있다. 그러나 최근의 연구들이 구조물의 정적거동에 국한되어 있는 상이며, 피로거동에 대한 연구는 극히 제한적으로 수행되고 있다. 본 연구에서는 쉬트형 유리섬유보강재로 보강된 11개의 바닥판시험체에 대하여 정적 및 피로실험을 실시하여 구조거동을 실험적으로 검증하고자 하였다. 정적실험변수는 보강방향에 따른 보강량을 변수로 하였으며, 정적시험결과로부터 나타난 무보강시험체와 보강시험체의 최대하중에 기초하여 피로시험시의 응력수준을 선정하였다. 시험결과 보강된 바닥판의 경우 균열진전에 대한 저항성이 증진되는 것으로 나타났으며, 응력분배 효과 또한 뛰어난 것으로 나타났다. 이와 함께 피로시험결과 컴플라이언스 변화정도 역시 무보강바닥판에 비하여 효과적으로 감소하는 것으로 나타났다.