• 제목/요약/키워드: Static and dynamic stability

검색결과 449건 처리시간 0.023초

유조화차의 대차 및 구조체 하중시험과 동특성 해석 연구 (Static load test and dynamic characteristics analysis of bogie and body structures of an oil tank)

  • 홍재성;함영삼;백영남;오택열;김길동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.780-783
    • /
    • 2003
  • In this study, As The Tae Yang Metal company manufactured oil tank inserts welding structure bogie, it is Contributed in stability security of freight car of oil tank through static load test, dynamic characteristics analysis. vibration performance test etc. to verify intensity of bogie frame & body structure

  • PDF

The Effects of Bridge Exercise with Abdominal Drawing-in on Balance in Patients with Stroke

  • Song, Gui-bin;Heo, Ju-young
    • The Journal of Korean Physical Therapy
    • /
    • 제28권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate the effect of Bridge exercise with abdominal drawing-in on static and dynamic balance in patients with stroke. Methods: Forty patients with stroke participated in this study. Participation was randomly assigned to the Bridge exercise group (n=20) and the Bridge exercise with abdominal drawing-in group (n=20). A bio-feedback device was used when patients performed the Bridge exercise with abdominal drawing-in. This training was performed without any motion on the patient's spine and upper belly part, and the pressure was held with the biofeedback device as 40-70 mmHg. Both groups received training 30 minutes per day, three times per week, for four weeks. Weight bearing, anterior limit of stability, and posterior limit of stability for static balance ability were measured, and Berg balance scale (BBS), Timed up and go test (TUG) for dynamic balance ability were also measured. Results: Participants showed significant differences between pre- and post-mediation in terms of weight bearing, anterior limit of stability, posterior limit of stability, Berg balance scale, and Timed up and go test (p<0.05). The Bridge exercise with abdominal drawing-in group showed a more significant increase (p<0.05). Conclusion: According to the results of this study, both exercises were effective for improving the static and dynamic balance ability. However we suggest that the Bridge exercise with abdominal drawing-in is more efficient for increasing balance ability in patients with stroke.

Seismic stability analysis of tunnel face in purely cohesive soil by a pseudo-dynamic approach

  • Huang, Qi;Zou, Jin-feng;Qian, Ze-hang
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.1-13
    • /
    • 2020
  • To give a solution for seismic stability of tunnel faces subjected to earthquake ground shakings, the pseudo-dynamic approach is originally introduced to analyze tunnel face stability in this study. In the light of the upper-bound theorem of limit analysis, an advanced three-dimensional mechanism combined with pseudo-dynamic approach is proposed. Based on this mechanism, the required support pressure on tunnel face can be obtained by equaling external work rates to the internal energy dissipation and implementing an optimization searching procedure related to time. Both time and space feature of seismic waves are properly accounted for in the proposed mechanism. For this reason, the proposed mechanism can better represent the actual influence of seismic motion and has a remarkable advantage in evaluating the effects of vertical seismic acceleration, soil amplification factor, seismic wave period and initial phase difference on tunnel face stability. Furthermore, the pseudo-dynamic approach is compared with the pseudo-static approach. The difference between them is illustrated from a new but understandable perspective. The comparison demonstrates that the pseudo-static approach is a conservative method but still could provide precise enough results as the pseudo-dynamic approach if the value of seismic wavelengths is large or the height of soil structures is small.

Investigating dynamic stability behavior of sandwich plates with porous core based on a numerical approach

  • Zhu, Zhihui;Zhu, Meifang
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.609-615
    • /
    • 2022
  • A numerical approach for dynamic stability analysis of sandwich plates has been provided using Chebyshev-Ritz-Bolotin approach. The sandwich plate with porous core has been formulated according to a higher-order plate. All of material properties are assumed to be dependent of porosity factor which determines the amount or volume of pores. The sandwich plate has also been assumed to be under periodic in-plane loading of compressive type. It will be shown that stability boundaries of the sandwich plate are dependent on static and dynamical load factors, porosity factor, porosity variation and core thickness.

복합공구대용 B축 회전테이블 웜 기어의 정/동적 안정성 및 피로에 관한 연구 (A Study on the Static/Dynamic Stability and the Fatigue Damages for the Worm Gear in the B-Axis Rotary Table of a Mill Turret)

  • 김재실;강승희
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.107-115
    • /
    • 2014
  • Highly functional mill turrets have been developed and continuously improved to shorten the manufacturing time and enable multiple uses. Among these, a mill turret with B-axis rotary table was developed. The B-axis rotary table should be evaluated for structural integrity. Moreover, its worm and worm gear for transmitting power should be able to endure fatigue damage. Therefore, this article presents a structural analysis of this type of B-axis rotary table and confirms its static stability by comparing the stress results to the allowable stress levels. Next, the dynamic stability of the rotary table was investigated via a mode analysis and a harmonic analysis in a range determined by the results of a modal analysis. Finally, a worm gear set, the main part that drives the rotary table, is analyzed for fatigue and to estimate its lifetime. The results of the fatigue analysis allowed a prediction of the life of the worm gear set. The analytical results show that the B-axis rotary table has good structural integrity.

Assessment of Total Transfer Capability Using IPLAN: An Application of UPFC for Total Transfer Capability Enhancement

  • Lee Byung Ha;Kim Jung-Hoon;Kwak No-Hong;Lee Woon-Hee
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권3호
    • /
    • pp.244-251
    • /
    • 2005
  • Power transfer capability has been recently highlighted as a key issue in many utilities. It is determined by the thermal stability, dynamic stability and voltage stability limits of generation and transmission systems. In particular, voltage stability affects power transfer capability to a great extent in many power systems. This paper presents a tool for determining total transfer capability from a static voltage stability viewpoint using IPLAN, which is a high level language used with the PSS/E program. The tool was developed so as to analyze static voltage stability and to determine the total transfer capability between different areas from a static voltage stability viewpoint by tracing stationary behaviors of power systems. A unified power flow controller (UPFC) is applied for enhancing total transfer capability between different areas from the viewpoint of static voltage stability. Evaluation of the total transfer capability of a practical KEPCO power system is performed from the point of view of static voltage stability, and the effect of enhancing the total transfer capability by UPFC is analyzed.

DUP 가 있는 위그선의 공력학 특성 및 고도 안정성 (Aerodynamic Characteristics and Static Height Stability of WIG Effect Vehicle with Direct Underside Pressurization)

  • 박경우;김진배;이주희
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.961-967
    • /
    • 2009
  • A 3-dimensional numerical investigation of a WIG effect vehicle with DUP (direct underside pressurization) is performed to predict aerodynamic characteristics and the static height stability. DUP can considerably reduce take-off speed and minimize the hump drag while the vehicle accelerates on the water to take off. The DUP of the model vehicle, Aircat, consists of a propeller in the middle of the fuselage and an air chamber under the fuselage. The air accelerated by the propeller comes into the camber through the channel in the middle of fuselage and augments lift by changing its dynamic pressure to static pressure dramatically. However, the air accelerated by a propeller produces excessive drag and reduces static height stability.

Compromise Optimal Design using Control-based Analysis of Hypersonic Vehicles

  • Liu, Yanbin;bing, Hua
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.137-147
    • /
    • 2015
  • Hypersonic vehicles exhibit distinct dynamic and static characteristics, such as unstable dynamics, strict altitude angle limitation, large control bandwidth, and unconventional system sensitivity. In this study, compromise relations between the dynamic features and static performances for hypersonic vehicles are investigated. A compromise optimal design for hypersonic vehicles is discussed. A parametric model for analyzing the dynamic and static characteristics is established, and then the optimal performance indices are provided according to the different design goals. A compromise optimization method to balance the dynamic and static characteristics is also discussed. The feasibility of this method for hypersonic vehicles is demonstrated.

Changes of postural stability according to ankle fixation in healthy subjects

  • Jeong, Su-Hyeon;Mun, A-Young;Lee, Song-Eun;Kim, Min-Ju;Lee, Hui-Jin;Baek, Kook-Bin;Cho, Ki Hun
    • Physical Therapy Rehabilitation Science
    • /
    • 제8권1호
    • /
    • pp.40-44
    • /
    • 2019
  • Objective: The purpose of this study was to examine the changes in postural stability according to ankle fixation in healthy university students. Design: Cross-sectional study. Methods: Thirty healthy subjects (15 males and 15 females, 20.13 years, 167.49 cm, 65.87 kg) were recruited on a voluntary basis. The BT4 system (HUR Laps Oy, Tampere, Finland) was used to measure the static (standing posture with eyes open and eyes closed) and dynamic (external perturbation and limits of stability (LOS) in the forward, backward, left, and right side) balance abilities. External perturbation was measured by the subject's postural sway velocity and area for 20 seconds after being impacted by a gym ball. Static and dynamic stabilities were measured with ankle joint fixation and non-fixation conditions. Ankle fixation was provided using Mueller tape on both ankle joints. Results: For static stability under the standing posture, there was no significant difference between standing with ankle joint fixation and non-fixation conditions. However, dynamic stability (external perturbation and LOS in the forward, backward, left, and right side) was significantly higher in the standing with the non-fixation condition compared to the standing with ankle joint fixation condition (p<0.05). Conclusions: Our results reveal that ankle joint fixation can influence dynamic stability during standing. Thus, we believe that this result provides basic information for making improvements in postural control and may be useful in balance training for fall prevention.

STATCOM을 활용한 FIDVR 완화 방안에 대한 연구 (A Study on the FIDVR Mitigation Scheme using Dynamic Voltage Support by STATCOM)

  • 이윤환;정승민
    • 전기학회논문지P
    • /
    • 제67권4호
    • /
    • pp.208-213
    • /
    • 2018
  • In this paper, we studied the control strategy of applying STATCOM(static synchronous compensator) to mitigate the FIDVR(fault induced delayed voltage recovery) phenomenon. The proportion of motor loads is gradually increasing which might affect power system stability. Excessive reactive power consumption by the stall of the motor loads causes FIDVR phenomenon. In addition, the low inertia of the small HVAC(heating, ventilation and air conditioner) unit will not separate itself in the event of a contingency, causing system instability. For this reason, we have developed a control strategy that utilizes STATCOM efficiently through static and dynamic analysis. Case studies on a Korean power system have validated the performance of the proposed scheme under severe contingency scenarios. The results have verified that the proposed strategy can effectively mitigate FIDVR and improve the stability and reliability of the system.