• 제목/요약/키워드: Static and Dynamic Characteristics

검색결과 1,164건 처리시간 0.025초

Laminate composites behavior under quasi-static and high velocity perforation

  • Yeganeh, E. Mehrabani;Liaghat, G.H.;Pol, M.H.
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.777-796
    • /
    • 2016
  • In this paper, the behavior of woven E-glass fabric composite laminate was experimentally investigated under quasi-static indentation and high velocity impact by flat-ended, hemispherical, conical (cone angle of $37^{\circ}$ and $90^{\circ}$) and ogival (CRH of 1.5 and 2.5) cylindrical perforators. Moreover, the results are compared in order to explore the possibility of extending quasi-static indentation test results to high velocity impact test results in different characteristics such as perforation mechanisms, performance of perforators, energy absorption, friction force, etc. The effects of perforator nose shape, nose length and nose-shank connection shapes were investigated. The results showed that the quasi-static indentation test has a great ability to predict the high velocity impact behavior of the composite laminates especially in several characteristics such as perforation mechanisms, perforator performance. In both experiments, the highest performance occurs for 2.5 CRH projectile and the lowest is related to blunt projectiles. The results show that sharp perforators indicate lower values of dynamic enhancement factor and the flat-ended perforator represents the maximum dynamic enhancement factor among other perforators. Moreover, damage propagation far more occurred in high velocity impact tests then quasi-static tests. The highest damage area is mostly observed in ballistic limit of each projectile which projectile deviation strongly increases this area.

소형 공조용 증발기의 특성 해석 (Analysis of Characteristics on Small Air-Conditioning Type Evaporator)

  • 김재돌;윤정인;김영수;문춘근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.573-580
    • /
    • 2001
  • When investigating optimum design of the evaporator in the refrigeration and heat pump systems, there is still lack of data for the dynamic characteristics of the evaporator, This is due to the fact that the static characteristics in the evaporator are absolutely difficult to measure and are burdened with uncertainties. In this study, the simulation works for static characteristics in the evaporator of small air conditioner are carried out to obtain the data of dynamic characteristics. In the simulation, the test evaporator is divided by two-phase evaporating region and single-phase heating region. The major parameters are refrigerant flow rate, heat transfer coefficient of air, air velocity and air temperature. The results show that the calculation method for tube length is an easy-to-use to model analysis of static characteristics and to determine state of refrigerant in the evaporator. The effects of the four parameters on the length of evaporating completed point and heat flow rate to the evaporator are clarified.

  • PDF

지진하중을 받는 단자유도 구조물의 신속한 동적 신뢰성 추정 방법 (Fast Dynamic Reliability Estimation Approach of Seismically Excited SDOF Structure)

  • 이도근;옥승용
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.39-48
    • /
    • 2020
  • This study proposes a fast estimation method of dynamic reliability indices or failure probability for SDOF structure subjected to earthquake excitations. The proposed estimation method attempts to derive coefficient function for correcting dynamic effects from static reliability analysis in order to estimate the dynamic reliability analysis results. For this purpose, a total of 60 cases of structures with various characteristics of natural frequency and damping ratio under various allowable limits were taken into account, and various types of approximation coefficient functions were considered as potential candidate models for dynamic effect correction. Each reliability index was computed by directly performing static and dynamic reliability analyses for the given 60 cases, and nonlinear curve fittings for potential candidate models were performed from the computed reliability index data. Then, the optimal estimation model was determined by evaluating the accuracy of the dynamic reliability analysis results estimated from each candidate model. Additional static and dynamic reliability analyses were performed for new models with different characteristics of natural frequency, damping ratio and allowable limit. From these results, the accuracy and numerical efficiency of the optimal estimation model were compared with the dynamic reliability analysis results. As a result, it was confirmed that the proposed model can be a very efficient tool of the dynamic reliability estimation for seismically excited SDOF structure since it can provide very fast and accurate reliability analysis results.

Static and dynamic responses of a tied-arch railway bridge under train load

  • Gou, Hongye;Yang, Biao;Guo, Wei;Bao, Yi
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.13-22
    • /
    • 2019
  • In this paper, the static and dynamic responses of a tied-arch railway bridge under train load were studied through field tests. The deflection and stresses of the bridge were measured in different static loading scenarios. The dynamic load test of the bridge was carried out under the excitation of running train at different speeds. The dynamic properties of the bridge were investigated in terms of the free vibration characteristics, dynamic coefficients, accelerations, displacements and derailment coefficients. The results indicate that the tie of the measuring point has a significant effect on the vertical movement of the test section. The dynamic responses of arch bridge are insensitive to the number of trains. The derailment coefficients of locomotive and carriage increase with the train speed and symmetrically distributed double-line loads reduce the train derailment probability.

경어뢰의 정특성 허용오차 산정 (An Evaluation of the Tolerance of the Static Characteristics for Light Weight Torpedoes)

  • 나영인
    • 한국군사과학기술학회지
    • /
    • 제5권2호
    • /
    • pp.149-158
    • /
    • 2002
  • Static Characteristics of the system, such as weight, center of gravity etc., are inspected and regulated through the whole design process of a light weight torpedo system, and the nominal condition of the characteristics is prescribed for standardization of manufacturing and fabrication. It is possible that a real system or assembled system has different static characteristics from that of the nominal condition. It is required to evaluate the tolerance of the static characteristics within which the performance of the system should not be contaminated by the static characteristics. In this paper, an evaluation method of the tolerance is described for light weight torpedo systems. The method is to check on the performance and related critical parameters of light weight torpedoes. The checking items are composed of general conditions of underwater mobile systems such as stability and dynamic sensitivity and specified performance requirements for light weight torpedoes.

경량화용 복합재 튜브의 적층구성이 흡수에너지 특성에 미치는 영향 (Influence of Stacking Sequence Conditions the Absorbed Energy Characteristics of Composite Tubes)

  • 김영남;김지훈;양인영
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.34-41
    • /
    • 2001
  • This study is to investigate the energy absorption characteristics of CFRP(Carbon-Fiber Reinforced Plastics) tubes on static and dynamic tests. Axial static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine) and dynamic compression tests have been utilized using an vertical crushing testing machine. When such tubes are subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that could control the crushing process. The collapse characteristics and energy absorption have been examined for various tubes. Energy absorption of the tubes are increased as changes in the lay-up which may increase the modulus of tubes. The results have been varied significantly as a function of ply orientation and interlaminar number.

  • PDF

Static and Dynamic Instability Characteristics of Thin Plate like Beam with Internal Flaw Subjected to In-plane Harmonic Load

  • R, Rahul.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.19-29
    • /
    • 2013
  • This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper deviations in simple and combination resonance characteristics.

Dynamic to static eccentricity ratio for site-specific earthquakes

  • Kamatchi, P.;Ramana, G.V.;Nagpal, A.K.;Iyer, Nagesh R.;Bhat, J.A.
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.391-413
    • /
    • 2015
  • Damage of torsionally coupled buildings situated on soil sites has been reported in literature, however no site-specific studies are available for torsionally coupled buildings having site characteristics as a parameter. Effect of torsion is being accounted in seismic codes by the provision of design eccentricity where the dynamic to static eccentricity ratio is a parameter. In this paper, a methodology to determine dynamic to static eccentricity ratio of torsionally coupled buildings has been demonstrated for Delhi region for two torsionally coupled buildings on three soil sites. The variations of average and standard deviations of frame shears for stiff and flexible edges are studied for four eccentricity ratios for the two buildings for the three sites. From the limited studies made, it is observed that the dynamic to static eccentricity ratios observed for site-specific earthquakes are different from Indian seismic code specified value, hence a proposal is made to include a comment in Indian seismic code. Methodology proposed in this paper can be adopted for any region, for the estimation of dynamic to static eccentricity ratio for site specific earthquake.

인공위성 반작용휠의 미소진동 측정 및 분석

  • 오시환;이승우
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.25-33
    • /
    • 2004
  • 본 논문에서는 인공위성 반작용휠의 미소진동 측정을 위한 테스트 장비와 이를 이용하여 실측한 반작용휠의 미소진동을 측정 및 분석 결과를 소개한다. 위성의 미소진동은 KISTLER dynamic platform 이라는 400Hz 이내의 3축의 힘과 3축의 토크를 동시에 측정할 수 있는 장비에 의해 측정되며 측정된 데이터는 회전 속도에 따라 3차원 주파수 분석, order tracking 등의 방법을 이용하여 분석된다. 반작용휠의 미소진동 분석 결과, 회전 속도와 비례하는 일차 성분 외에 고차 조화 성분, 구조 진동 성분, 회전 속도에 따라 고유진동수가 변하는 rocking 모드 성분 등을 관찰할 수 있었으며, 휠의 정적 및 동적 불균형은 각각 0.79gcm과 17.4gcm²으로 나타났다. 이러한 다양한 진동 성분들은 회전체의 특성, 구조물의 특성 및 베어링의 영향으로 기인한다.

  • PDF

방진제도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석 (A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System)

  • 최정열;엄맥;강덕만;박용걸
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.717-724
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements (about 59%) and stresses (about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.