• 제목/요약/키워드: Static analysis method

검색결과 2,341건 처리시간 0.026초

Experimental and theoretical studies on SHS column connection with external stiffening ring under static tension load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Ma, Xu;Quan, Xinxin
    • Steel and Composite Structures
    • /
    • 제28권2호
    • /
    • pp.167-177
    • /
    • 2018
  • In order to investigate mechanical properties in the core area of Square Hollow Section(SHS) column connection with external stiffening ring, four specimens were tested under the static tension load. The failure modes, load-displacement curves and strain distribution were analyzed to study the mechanical properties and the load transfer mechanism of the core area of connections. The connections behave good ductility and load-bearing capacity under the static tension load. Parametric analysis was also conducted, in which the thickness of steel tube, extended width and thickness of the stiffening ring were considered as the parameters to investigate the effects on mechanical properties of the connections. Based on the experimental results, an analytical method for the bearing capacity of connection with external stiffening ring under the static tension load was proposed. The theoretical results and the experimental results are in good agreement, which indicates that the theoretical calculation method of the bearing capacity is advisable.

정적 시험을 사용한 CFTA거더의 제조시 강성 결함 탐색 (Detection of Manufacturing Defects in Stiffness of CFTA Girder using Static Loading)

  • 김두기;나뎀 파레즈;취진타오;박경훈
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.109-116
    • /
    • 2012
  • 새로운 형태의 교량 거더인 CFTA(Concrete filled and tied tubular steel arch) 거더의 비선형 거동에 대해 고찰한 후, CFTA 거더의 대량 공장 생산시 콘크리트 충진 불량으로 발생할 수 있는 결함인 거더 안의 빈 공간을 탐지하는 새로운 방법을 제안하였다. CFTA 거더 안의 비대칭성 콘크리트 충진 불량 결함을 구조물의 대칭 거동을 이용하여 탐색하였으며, 수치해석과 실험을 통해 제안된 방법을 검증하였다. 제안된 방법을 수치적으로 검증하기 위해 3차원 유한요소모델을 사용하였으며, 실험적으로 검증하기 위해 CFTA거더의 정적 실험자료를 사용하였다.

동하중을 받는 구조물의 동적특성에 관한 설계 관점에서의 고찰 (An Investigation of Dynamic Characteristics of Structures Subjected to Dynamic Load from the Viewpoint of Design)

  • 이현아;김용일;강병수;김주성;박경진
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1194-1201
    • /
    • 2006
  • All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads.

강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 실험 및 해석적 연구 (An Experimental and Analytical study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method)

  • 박영훈;조선규;최정열;박용걸
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.151-159
    • /
    • 2006
  • It analyzed the mechanical behaviors of non-ballasted railway bridge (steel plate girder type) with ballast reinforced on the finite element analysis, field test and laboratory test far the static and dynamic responses. The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external post-tensioning method. The reinforcement of non-ballast railway bridge had obviously stable dynamic behaviors due to the additional dead force which was ballast. But in case of static behaviors, static displacements and stresses had increased nearly the allowable values. Therefore we analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite element analysis and laboratory test for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external post-tensioning method are obviously effective for the additional dead force which is ballast. The analytical and experimental study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. The servicing railway bridge with ballast reinforced has need of the reasonable reinforcement measures which could be reducing the effect of additional dead load that degradation phenomenon of structure by an unusual. stresses and a drop durability.

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

Optimization of static response of laminated composite plate using nonlinear FEM and ANOVA Taguchi method

  • Pratyush Kumar Sahu;Trupti Ranjan Mahapatra;Sanjib Jaypuria;Debadutta Mishra
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.625-639
    • /
    • 2023
  • In this paper, a Taguchi-based finite element method (FEM) has been proposed and implemented to assess optimal design parameters for minimum static deflection in laminated composite plate. An orthodox mathematical model (based on higher-order shear deformation plate theory and Green-Lagrange geometrical nonlinearity) has been used to compute the nonlinear central deflection values of laminated composite plates according to Taguchi design of experiment via a self-developed MATLAB computer code. The lay-up scheme, aspect ratio, thickness ratio and the support conditions of the laminated composite plate structure were designated as the governable design parameters. Analysis of variance (ANOVA) is used to investigate the effect of diverse control factors on the nonlinear static responses. Moreover, regression model is developed for predicting the desired responses. The ANOVA revealed that the lay-up scheme alongside the support condition plays vital role in minimizing the central deflection values of laminated composite plate under uniformly distributed load. The conformity test results of Taguchi analysis are also in good agreement with the numerical experimentation results.

Nonlinear Static Analysis of Cable Roof Structures with Unified Kinematic Description

  • LEE, Sang Jin
    • Architectural research
    • /
    • 제18권1호
    • /
    • pp.39-47
    • /
    • 2016
  • A finite element analysis technology applicable to the prediction of the static nonlinear response of cable roof structure is presented. The unified kinematic description is employed to formulate the present cable element and different strain definitions such as Green-Lagrange strain, Biot strain and Hencky strain can be adopted. The Newton-Raphson method is used to trace the nonlinear load-displacement path. In the iteration process, the compressive stress of a cable element is not allowed. For the verification of the present cable element, four numerical examples are tackled. Finally, numerical results obtained by using the present cable element are provided as new benchmark test results for cable structures under static loads.

Accurate FDTD Analysis of Bow-tie Antenna

  • Cho, Young-Il;Park, Dong-Hyuk;Park, Soeng-Ook
    • Journal of electromagnetic engineering and science
    • /
    • 제4권1호
    • /
    • pp.13-16
    • /
    • 2004
  • In this paper, FDTD analysis of the bow-tie antenna is investigated by incorporating static field solution that is suitable to the bow-tie antenna without increasing computational time. Transforming static feld solution to the rotated grid system, we can obtain the transformed static field solution which is able to represent field behavior near the oblique edge line of the bow-tie antenna. The result shows a good agreement with a MoM analysis and is compared conformal modeling technique and regular FDTD method.

UIC code에 따른 대차 프레임 구조해석 및 시험에 관한 연구 (A Study on the Structural Analysis and Test of the Bogie Frame According to UIC Code)

  • 최중호;송시엽;천홍정;전형용;박형순
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.884-891
    • /
    • 2002
  • This report is the result performed the structural analysis and the static and fatigue load test of bogie frame for the purpose of designing and verifying the bogie frame which satisfy the load condition required in the UIC code. This investigation is proposed the efficient draft of the design to satisfy the load condition required in the UIC code. And It is performed the structural analysis to evaluate the static strength and the fatigue life of the patient material and the welded part. Also, This is proposed the efficient draft of the test to satisfy the method of the static and fatigue test required in the UC code. And it is carried out the static and the fatigue load test to verify it. We can designed the bogie frame in compliance with UIC 515-4 and 615-4 code.

  • PDF

Modified Boundary-Fitted Coordinate System Method for HDD Slider Analysis

  • 황평
    • KSTLE International Journal
    • /
    • 제5권2호
    • /
    • pp.52-56
    • /
    • 2004
  • The hard disk drive performance depends strongly on air bearing characterisitcs of the head slider. The objective of the slider design is to provide accurate positioning of the magnetic read/write element at the very small height above the disk. Application of the numerical methods is required due to complexity of the air bearing surface of the slider. The Boundary-Fitted Coordinate System Divergence Formulation method can be used for calculation of pressure distribution in the case of steep film thickness gradients. In the present work, the interpolating functions used in the expression for the Couette flow are modified in order to improve the solution characteristics in the extremely high compressibility number region. The advantages of the modified method are demonstrated on example of the flat skewed slider. Finally, the modi.ed method is applied to analysis of the static characteristics of the femto-slider. The analysis results indicate the effect of the silder's air bearing surface crown on the flying height and the pitching angle in steady state position.