• Title/Summary/Keyword: Static Type Assignment

Search Result 10, Processing Time 0.021 seconds

Static Type Assignment for SSA Form in CTOC

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • Although the Java bytecode has numerous advantages, it also has certain shortcomings such as its slow execution speed and difficulty of analysis. In order to overcome such disadvantages, a bytecode analysis and optimization must be performed. The control flow of the bytecode should be analyzed; next, information is required regarding where the variables are defined and used to conduct a dataflow analysis and optimization. There may be cases where variables with an identical name contain different values at different locations during execution, according to the value assigned to a given variable in each location. Therefore, in order to statically determine the value and type, the variables must be separated according to allocation. In order to achieve this, variables can be expressed using a static single assignment form. After transformation into a static single assignment form, the type information of each node expressed by each variable and expression must be configured to perform a static analysis and optimization. Based on the basic type information, this paper proposes a method for finding the related equivalent nodes, setting nodes with strong connection components, and efficiently assigning each node type.

A Study on Static Type Assignment for Static Single Assignment Form (정적 단일 배정 형태를 위한 정적 타입 배정에 관한 연구)

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.117-126
    • /
    • 2006
  • Although the Java bytecode has numerous advantages, there are also shortcomings such as slow execution speed and difficulty in analysis. In order to overcome such disadvantages, bytecode analysis and optimization must be performed. First control flow of the bytecode should be analyzed, after which information is required regarding where the variables are defined and used to conduct data flow analysis and optimization. There may be cases where variables with an identical name contain different values at a different location during the execution according to the value assigned to a variable in each location. Therefore, in order to statically determine the value and type, the variables must be separated according to allocation. In order to do so, the variables can be expressed using a static single assignment form. After the transformation into a static single assignment form, the type information of each node expressed by each variable and expression must be configured to perform static analysis and optimization. Based on the basic type information, this paper proposes a method for finding related equivalent nodes, setting the nodes with strongly connection components and efficiently assigning each node the type.

  • PDF

Static Type Inference Based on Static Single Assignment for Bytecode (바이트코드를 위한 정적 단일 배정문 기반의 정적 타입 추론)

  • Kim Ji-Min;Kim Ki-Tea;Kim Je-Min;Yoo Weon-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.87-96
    • /
    • 2006
  • Although bytecode has many good features, it has slow execution speed and it is not an ideal representation for program analysis or optimization. For analysises and optimizations. bytecode must be translated to a Static Single Assignment Form(SSA Form) But when bytecode is translated a SSA Form it has lost type informations of son variables. For resolving these problem in this paper, we create extended control flow graph on bytecode. Also we convert the control flow graph to SSA Form for static analysis. Calculation about many informations such as dominator, immediate dominator. dominance frontier. ${\phi}$-Function. renaming are required to convert to SSA Form. To obtain appropriate type for generated SSA Form, we proceed the followings. First. we construct call graph and derivation graph of classes. And the we collect information associated with each node. After finding equivalence nodes and constructing Strongly Connected Component based on the collected informations. we assign type to each node.

  • PDF

Split Local Variables Using Static Single Assignment Form in CTOC (CTOC에서 정적 단일 배정문 형태를 이용한 지역 변수 분리)

  • Lee Kab-Lae;Yoo Weon-Hee;Kim Ki-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.73-81
    • /
    • 2005
  • CTOC(Classes To Optimized Classes) is a Java bytecode framework for optimization and analysis. Although Java bytecode has a significant amount of type information embedded in it, there are no explicit types for local variables. However, knowing types for local variables is very useful for both program optimization and analysis. This paper is a first part of CTOC framework. In this paper, we present methods for inferring static types for local variables in a 3-address, stackless, representation of Java bytecode. We use SSA Form(Single Static Assignment Form) for spliting local variables. Splited local variables will use to prepare for static type inference.

  • PDF

Static Single Assignment Form for Java Bytecodes in CTOC (CTOC에서 자바 바이트코드를 위한 정적 단일 배정 형태)

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.939-946
    • /
    • 2006
  • Although the Java bytecode has numerous advantages, there are also shortcomings such as slow execution speed and difficulty in analysis. In order to overcome such disadvantages, bytecode analysis and optimization must be performed. We implements CTOC for optimized codes. An extended CFG must be first created in order to analyze and optimize a bytecode. Due to unique bytecode properties, the existing CFG must be expanded according to the bytecode. Furthermore, the CFG must be converted into SSA Form for a static analysis, for which calculation is required for various information such as the dominate relation, dominator tree, immediate dominator, $\phi$-function, rename, and dominance frontier. This paper describes the algorithm and the process for converting the existing CFG into the SSA From. The graph that incorporates the SSA Form is later used for type inference and optimization.

Optimization Using Partial Redundancy Elimination in SSA Form (SSA Form에서 부분 중복 제거를 이용한 최적화)

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • The KIPS Transactions:PartD
    • /
    • v.14D no.2
    • /
    • pp.217-224
    • /
    • 2007
  • In order to determine the value and type statically. CTOC uses the SSA Form which separates the variable according to assignment. The SSA Form is widely being used as the intermediate expression of the compiler for data flow analysis as well as code optimization. However, the conventional SSA Form is more associated with variables rather than expressions. Accordingly, the redundant expressions are eliminated to optimize expressions of the SSA From. This paper defines the partial redundant expression to obtain a more optimized code and also implements the technique for eliminating such expressions.

Compromise Scheme for Assigning Tasks on a Homogeneous Distributed System

  • Kim, Joo-Man
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • We consider the problem of assigning tasks to homogeneous nodes in the distributed system, so as to minimize the amount of communication, while balancing the processors' loads. This issue can be posed as the graph partitioning problem. Given an undirected graph G=(nodes, edges), where nodes represent task modules and edges represent communication, the goal is to divide n, the number of processors, as to balance the processors' loads, while minimizing the capacity of edges cut. Since these two optimization criteria conflict each other, one has to make a compromise between them according to the given task type. We propose a new cost function to evaluate static task assignments and a heuristic algorithm to solve the transformed problem, explicitly describing the tradeoff between the two goals. Simulation results show that our approach outperforms an existing representative approach for a variety of task and processing systems.

Array Bounds Check Elimination using Ineguality Graph in Java Just-in-Time Compiler (대소관계 그래프를 이용한 Just-in-Time 컴파일 환경에서의 배열 경계 검사 제거)

  • Choi Sun-il;Moon Soo-mook
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1283-1291
    • /
    • 2005
  • One of the problems in boosting Java performance using a Just-in-Time (JIT) compiler is removing redundant array bound checks. In conventional static compilers, many powerful algorithms have been developed, yet they are not directly applicable to JIT compilation where the compilation time is part of the whole running time. In the current JIT compilers, we tan use either a naive algorithm that is not powerful enough or an aggressive algorithm which requires the transformation into a static single assignment (SSA) form of programs (and back to the original form after optimization), thus causing too much overhead not appropriate for JIT compilation This paper proposes a new algorithm based on an inequality graph which can eliminate array bounds check codes aggressively without resorting to the SSA form. When we actually perform this type of optimization, there are many constraints in code motion caused by the precise exception rule in Java specification, which would cause the algorithm to miss many opportunities for eliminating away bound checks. We also propose a new method to overcome these constraints.

Implementation of Dead Code Elimination in CTOC (CTOC에서 죽은 코드 제거 구현)

  • Kim, Ki-Tae;Kim, Je-Min;Yoo, Won-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.1-8
    • /
    • 2007
  • Although the Java bytecode has numerous advantages, there are also shortcomings such as slow execution speed and difficulty in analysis. Therefore, in order for the Java class file to be effectively executed under the execution environment such as the network, it is necessary to convert it into optimized code. We implements CTOC. In order to statically determine the value and type, CTOC uses the SSA Form which separates the variable according to assignment. Also, it uses a Tree Form for statements. But, due to insertion of the $\phi$-function in the process of conversion into the SSA Form, the number of nodes increased. This paper shows the dead code elimination to obtain a more optimized code in SSA Form. We add new live field in each node and achieve dead code elimination in tree structures. We can confirm after dead code elimination though test results that nodes decreases.

  • PDF

Concepts on Appearance Diagnosis and Four HyungSang Types - Fish, Bird, Horse, and Turtle - (장상논(臟象論)과 어조주갑류(魚鳥走甲類)에 대한 고찰)

  • Kim, Jong-Won;Jun, Soo-Hyung;Ji, Gyu-Yang;Kim, Kyung-Chul;Lee, In-Sun;Lee, Kwang-Young;Kim, Kyu-Kon;Lee, Yang-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • After a research on appearance diagnosis and fish, bird, horse, and turtle types, this study concluded as following. Appearance diagnosis is a technique that exams five jang organs by color and shape of eye, nose, mouth, and ear. Four HyungSang types-including fish, bird, horse and turtle types-are evaluated upon the external shape that are created while type of seed changes. Appearance diagnosis focuses on five jang organs. Four HyungSang types focus on external shape, but are eventually related to five jang organs. Thus, two different techniques possess a point in common; five jang organs. The assignment of nose, eye, ear and mouth to the Five elements varies between two techniques. On the viewpoint of formation, appearance diagnosis assigns them to metal-water-wood-fire-earth and movement, and four HyungSang types do to wood-fire-earth-metal-water and constitution. On the viewpoint of body/use and static/dynamic, appearance diagnosis assigns them to metal-water-wood-fire-earth and constitution, and four HyungSang types do to wood-fire-earth-metal-water and movement. If nose, eye, ear, and mouth are assigned by on four HyungSang types, which are based on external shape, the assignment can be utilized in diagnosis. If, however, they are assigned by appearance diagnosis, it can be focus on treatment. Five jang organs and six fu organs are affected by internal conditions because they are located inside of human body, while four HyungSang types are affected by external conditions because it deals with external shape. If a disease occurs in the developed part of the body, it would be difficult to be cured because four HyungSang types depend on external shapes.