• Title/Summary/Keyword: Static Strength Test

Search Result 781, Processing Time 0.032 seconds

An applied model for steel reinforced concrete columns

  • Lu, Xilin;Zhou, Ying
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.697-711
    • /
    • 2007
  • Though extensive research has been carried out for the ultimate strength of steel reinforced concrete (SRC) members under static and cyclic load, there was only limited information on the applied analysis models. Modeling of the inelastic response of SRC members can be accomplished by using a microcosmic model. However, generally used microcosmic model, which usually contains a group of parameters, is too complicated to apply in the nonlinear structural computation for large whole buildings. The intent of this paper is to develop an effective modeling approach for the reliable prediction of the inelastic response of SRC columns. Firstly, five SRC columns were tested under cyclic static load and constant axial force. Based on the experimental results, normalized trilinear skeleton curves were then put forward. Theoretical equation of normalizing point (ultimate strength point) was built up according to the load-bearing mechanism of RC columns and verified by the 5 specimens in this test and 14 SRC columns from parallel tests. Since no obvious strength deterioration and pinch effect were observed from the load-displacement curve, hysteresis rule considering only stiffness degradation was proposed through regression analysis. Compared with the experimental results, the applied analysis model is so reasonable to capture the overall cyclic response of SRC columns that it can be easily used in both static and dynamic analysis of the whole SRC structural systems.

The Effect of Taping and Stretching Exercise on Muscle Strength and Endurance of Knee Flexors and Extensors (테이핑과 신장운동이 슬관절 굴곡근과 신전근의 근력 및 근지구력에 미치는 영향)

  • Lee, Ho-Jae;Hyun, Sang-Wook;Seo, Hyun-Kyu
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • Purpose : to investigate change of isokinetic muscle strength and isokinetic muscle endurance of quadriceps femoris and hamstring after application of taping and static stretching. Methods : For this study, 14 male members of college soccer team participated in this research. Participants were divided into two groups: seven was assigned to a taping group(n=7) and the others were assigned to a static stretching exercise group(n=7). Main outcome was measured by using biodex. The isokinetic muscle strength test was processed at the speed of the $60^{\circ}$/sec five times, and isokinetic muscle endurance was processed at the speed of $180^{\circ}$/sec ten times. Results : From the outcomes of the measurement, the results show that there is a more significant difference in the taping group than in a static stretching exercise group. Conclusion : These results will be utilized for the preliminaries in the future.

  • PDF

Fracture Toughness and AE Behavior of Impact-Damaged CFRP (탄소섬유복합재료의 충격 손상에 따른 파괴 인성과 AE 특성)

  • Lee, S.G.;Nam, K.W.;Oh, S.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.81-88
    • /
    • 1997
  • Impact behavior of carbon fiber reinforced plastics (CFRP) laminates were evaluated with tension test and compact tension test. A steel ball launched by an air gun collides against CFRP laminates to generate impact damage of relatively low energy. The static tensile and fracture toughness tests were performed to evaluate the residual strength and the AE behavior of impact-damaged laminates. As a results, it was found that the static strength, the fracture toughness and the AE-event count were decreased with increasing of impact velocity and delamination area, and to have a different strength ratio and fracture toughness ratio for each stacking method. And also, it was confirmed that strength and fracture toughness of impact-damaged CFRP laminates could be evaluated and analyzed quantitatively by AE techniques.

  • PDF

Acute Effect of Isokinetic Muscle Strength Related to the Static Stretching of Knee Joint (무릎관절 정적 스트레칭 빈도에 따른 등속성 근력의 급성 효과)

  • Lim, Seung-Geon;Kim, Chang-Guk;Lee, Yun-Seob;Han, Jin-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.41-47
    • /
    • 2008
  • The purpose of this study was to provide foundations for proper stretching method not to lose muscle strength caused by shrink of muscle for preventing injury and improving performance when we make training programs. This study compared and analyzed isokinetic variables related to the static stretching frequency of knee joint extensor by isokinetic instruments applied to normal adults. 45 normal adults are randomly sampled into 3 different groups. All the measured variables were processed with SPSS and, means and standard deviations at each angle speed were calculated. The difference of means between before and after stretching of each groups were processed by paired t-test. One-way ANOVA and after test(Duncan) This study was able to see that stretching decrease acute isokinetic muscle strength High frequency stretching group showed more efficient decrease of muscle strength than low frequency stretching group. As a result, making training program for a game requiring strong muscle strength should consider proper stretching method not to lose muscle strength.

Dynamic Test Results Assessment on the Optical Bench of LEO Satellite (저궤도 지구관측위성의 광학탑재체 지지구조물 동환경시험 결과분석)

  • Kim, Kyung-Won;Kim, Jin-Hee;Rhee, Ju-Hun;Kim, Sun-Won;Jin, Ik-Min;Park, Jong-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.242-245
    • /
    • 2006
  • This paper is an assessment on the dynamic test results of optical bench for LEO satellite. According to the design requirements, optical bench was designed and manufactured. Dynamic test was performed to verify stability of optical bench. Low level random vibration test, sine burst test and sine vibration test are carried out to identify dynamic characteristics and to verify static strength and safety under quasi-static load conditions. From the result it can be stated that the optical bench is well qualified under the launch environmental conditions.

  • PDF

The effect of the thread depth on the mechanical properties of the dental implant

  • Lee, Sun-Young;Kim, Sung-Jun;An, Hyun-Wook;Kim, Hyun-Seung;Ha, Dong-Guk;Ryo, Kyung-Ho;Park, Kwang-Bum
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • PURPOSE. This study aimed to evaluate the effect of implant thread depth on primary stability in low density bone. MATERIALS AND METHODS. The insertion torque was measured by inserting Ti implants with different thread depths into solid rigid polyurethane blocks (Sawbones) with three different bone densities ($0.16g/cm^3$, $0.24g/cm^3$, and $0.32g/cm^3$). The insertion torque value was evaluated with a surgical engine. The static compressive strength was measured with a universal testing machine (UTM) and the Ti implants were aligned at $30^{\circ}$ against the loading direction of the UTM. After the static compressive strength test, the Ti implants were analyzed with a Measurescope. RESULTS. The Ti implants with deeper thread depth showed statistically higher mean insertion torque values (P<.001). Groups A and group B had similar maximum static compressive strengths, as did groups C and D (P>.05). After the static compressive strength, the thread shape of the Ti implants with deeper thread depth did not show any breakage but did show deformation of the implant body and abutment. CONCLUSION. The implants with deeper thread depth had higher mean insertion torque values but not lower compressive strength. The deep threads had a mechanical stability. Implants with deeper thread depth may increase the primary stability in areas of poor quality bone without decreasing mechanical strength.

Glass FRP-Bonded RC Beams under Cyclic Loading

  • Tan, Kiang-Hwee;Saha, Mithun-Kumar
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.45-55
    • /
    • 2007
  • Ten beams bonded with glass fiber reinforced polymer (GFRP) laminates were tested under cyclic loading with the load range and the FRP reinforcement ratio as test parameters. The maximum load level during cyclic loading was 55%, 65% and 75% of the static flexural strength while the minimum load level was kept constant at 35%. Deflections of the beams at the end of 525000 cycles were found to increase by 16% and 44% when the maximum load level was increased from 55% to 65% and 75% of the static flexural strength, respectively. Beams with FRP reinforcement ratios of 0.64% and 1.28% were found to exhibit lesser deflections of about 15% and 20%, respectively, compared to a similar beam without FRP reinforcement. An analytical approach based on cycle-dependent effective moduli of elasticity of concrete and FRP reinforcement is presented and found to predict the deflections of the test beams well.

An Experimental Study on the Flexural Strength of Fiber Reinforced Concrete Structures

  • Chai, Won-Kyu
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.26-28
    • /
    • 2012
  • In this thesis, fracture tests were carried out in order to investigate the flexural strength behavior of FRC(fiber reinforced concrete) structures. FRC beams were used in the tests, the initial crack load and the ultimate load of the beams were observed under the static loading. According to the results, the ultimate loads increase with the fiber content, and these tendency is clear in the specimens with large fiber aspect ratio. From the results of the regression analysis, practical formulae for predicting the flexural strength of FRC were suggested.

Static Shear Strength of Cast-in Anchors with Stirrup Reinforcement (스터럽 보강 선설치 앵커의 정적 전단하중에 대한 저항 강도)

  • Park, Yong Myung;Jo, Sung Hoon;Kim, Tae Hyung;Kang, Choong Hyun;Kim, Jae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • An experimental study was conducted to evaluate the static shear strength of stirrup-reinforced cast-in anchors. The test parameters considered herein are an existence of front bearing bar and concrete crack. M36 anchor was used with an edge distance of 180mm. HD-10 bars were used for all reinforcing bars and the stirrups were placed with 100mm spacing. The shear resistance increased by 16% when the front bearing bar was installed. Meanwhile, the resistance reduced only 5% in the cracked concrete compared with the uncracked concrete. The test results showed that ACI 318 and ETAG 001 specifications could estimate the shear strength of stirrup-reinforced anchors conservatively and a rational method was proposed. A consideration on the fracture strength of stirrup-reinforced anchor is also given.

The Estimation of Dynamic/Impact Strength Characteristics of High Tensile Steel by Dynamic Lethargy Coefficient (동적무기력계수에 의한 고장력강의 동적.충격강도 특성 평가)

  • 송준혁;박정민;채희창;강희용;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.96-100
    • /
    • 2002
  • The purpose of this paper is presented a rational method of predicting dynamic/impact tensile strength of high tensile steel materials widely used fur structural material of automobiles. It is known that the ultimate strength is related with the loading speed and the Lethargy Coefficient from the tensile test. The Dynamic Lethargy Coefficient is proportional to the disorientation of the molecular structure and indicates the magnitude of defects resulting from the probability of breaking the bonds responsible for its strength. The coefficient is obtained from the simple tensile test such as failure time and stresses at fracture. These factors not only affect the static strength but also have a great influence on the dynamic/impact characteristics of the joist and the adjacent structures. This strength is used to analyze the failure life prediction of mechanical system by virtue of its material fracture. The impact tensile test is performed to evaluate the life parameters due to loading speed with the proposed method. Also the evaluation of the dynamic/impact effect on the material tensile strength characteristics is compared with the result of Campbell-Cooper equation to verify the proposed method.