• Title/Summary/Keyword: Static Strength Analysis

Search Result 644, Processing Time 0.026 seconds

Study on the Reinforced Method of Doubler Plate in Ship Hull Structure (선박 이중판의 보강법 연구)

  • 함주혁
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.144-149
    • /
    • 2001
  • A study for the structural strength analysis on the doubler plate subjected to the axial, biaxial in-plane compression and shear load has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate, non-linear elasto-plastic analysis is introduced. Gap element modeling for contact effect between main plate and doubler is prepared and nonlinear analysis procedures are illustrated based on MSC/N4W . In addition, some design guides are suggested through the consideration of several important effects such as corrosion of main plate, doubler width, doubler length and doubler thickness. Finally theses results are compared with developed design formula based on the buckling strength and general trends and design guides according to the variation of design parameters are discussed.

  • PDF

Static Tension Analysis Method for Floating Tire Breakwater (부 타이어 소파제의 정적 장력 해석 방법)

  • YOON Gil-Su;CHU Weon-Hyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-40
    • /
    • 1993
  • This paper deals with static tension analysis method for Floating Tire Breakwater(FTB). FTB can be used for the limited wave height. It is especially focused on Goodyear type FTB easily applied to the breakwater for the fisheries cultivating region. The numerical examples for FTB design procedure was reviewed. It is also studied the static analysis method of offshore catenary spread mooring system. The general calculation procedure for the tension versus excursion curves for the multi-line system using the basic catenary relationship was studied. Calculation results showed good agreement with some existing mooring results. To extend this mooring force calculating method to the floating fisheries caitivating cages, the strength of synthetic fiber was considered. This analysis method can be used to the estimation of the mooring force for the floating structures such as floating breakwaters and floating artificial reefs.

  • PDF

A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet (마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구)

  • Son, Young-Ki;Jung, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

Design of Viscous Dampers Using Nonlinear Static Analysis (비탄성 정적해석을 이용한 점성감쇠기의 설계)

  • 김진구;최현훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.257-264
    • /
    • 2000
  • Nonlinear dynamic time history analysis of a structure with energy dissipation devices is complicated and time consuming. In this regard the nonlinear static analysis is a practical alternative for evaluating the earthquake resisting capacity of a structure. In this study the nonlinear static response of a structure was obtained first, and the equivalent viscous modal damping ratio required to satisfy the performance objective was computed in the capacity spectrum format. Then proper amount of viscous dampers were installed to provide the required damping. Parametric study has been performed for the period of the structure, yield strength, and the stiffness after the first yield. According to the earthquake time history analysis results, the maximum displacement of the model structure with viscous dampers designed in accordance with the proposed method corresponds well with the target displacements that was used in the beginning of the design process.

  • PDF

Strength Prediction and Optimum Design of Internally Ring-Stiffened Tubular X-and T-Joints (내부 환보강 X형 및 T형 관이음부의 강도산정과 최적설계)

  • Cho, Hyun-Man;Ryu, Yeon-Sun;Lee, Hyun-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.315-320
    • /
    • 2007
  • An effective reinforcement method for steel tubular joints having a large chord diameter is the use of internal ring stiffeners. This paper presents the results of a numerical study on the static strength of internally ring-stiffened tubular X- and T-joints subjected to brace axial compression loading. Nonlinear finite element analyses are used to compute the joint strength. The influence of geometrical parameters has been studied and the maximum reinforcement effect of a ring stiffener has been evaluated. A strength ratio is defined. by the ratio of ring-stiffened joint strength to unstiffened joint strength, and an equation for this strength ratio is derived by regression analysis. Design optimization for ring stiffener of tubular joints is carried out using metropolis genetic algorithm.

  • PDF

A Study on Strength Evaluation of Adhesive Joints(1st Report, Stress Analysis and Fracture Strength of Adhesive Single-Lap Joint) (접착이음의 강도평가에 관한 연구 (제1보 겹치기 접착이음의 응력해석과 파괴강도))

  • 정남용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.667-674
    • /
    • 1992
  • Recently advantages in composite and light weight material technique have led to the increased use of structural adhesives in various industries. In spite of such wide application of the adhesive joints, the evaluation method of fracture strength and design methodology of them, have not been established. In this study finite element method, theoretical and experimental analyses were investigated according to changes of lap length and adhesive for adhesive single-lap joint. As the results, the strength evaluation of adhesive joint by conventional nominal stress, was pointed out inadequate strength evaluation and design method regardless stress singularity, stress distribution and crack propagation in its adhesive layer. Also, it was examined the problems to apply fracture mechanics by means of static and fatigue test.

A Study on a New Concept for the Structural Strength Assessment to Development of Membrane LNG Cargo Container System under Static Load (멤브레인형 LNG 화물창 개발을 위한 정적 구조 안전성 평가 모델 연구)

  • Hwang, Se Yun;Kim, Yooil;Kang, Joong Kyoo;Lee, Jang Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.162-169
    • /
    • 2016
  • A new concept of membrane type LNG CCS was proposed. Also, its static behavior was numerically analyzed considering the interaction between primary and secondary barrier together with securing device. Hull deflection was taken into account as an external load, together with temperature distribution across the barriers. The suggested numerical model considers both sliding and contact between the two mating surfaces of both the primary and secondary barrier, and anisotropic material behavior of plywood, R-PUF was also taken into account. Furthermore, detailed local strength was evaluated for the securing device, which is arranged between two barriers to hold the primary barrier. It was confirmed through the numerical analysis that the new concept of membrane type CCS was structurally safe under static loading condition and securing concept was structurally reliable.

Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC

  • Hu, Yuqing;Zhao, Guotang;He, Zhiqi;Qi, Jianan;Wang, Jingquan
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.103-118
    • /
    • 2020
  • The static behavior of grouped large-headed studs (d = 30 mm) embedded in ultra-high performance concrete (UHPC) was investigated by conducting push-out tests and numerical analysis. In the push-out test, no splitting cracks were found in the UHPC slab, and the shank failure control the shear capacity, indicating the large-headed stud matches well with the mechanical properties of UHPC. Besides, it is found that the shear resistance of the stud embedded in UHPC is 11.4% higher than that embedded in normal strength concrete, indicating that the shear resistance was improved. Regarding the numerical analysis, the parametric study was conducted to investigate the influence of the concrete strength, aspect ratio of stud, stud diameter, and the spacing of stud in the direction of shear force on the shear performance of the large-headed stud. It is found that the stud diameter and stud spacing have an obvious influence on the shear resistance. Based on the test and numerical analysis results, a formula was established to predict the load-slip relationship. The comparison indicates that the predicted results agree well with the test results. To accurately predict the shear resistance of the stud embedded in UHPC, a design equation for shear strength is proposed. The ratio of the calculation results to the test results is 0.99.

The Static Structural Design and Test of High Speed Propeller Blade (고속 프로펠러 블레이드 정적 구조 설계 및 시험)

  • Park, Hyun-Bum;Choi, Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2014
  • The recent high speed propeller with blade sweep is required to have high strength to get the thrust to fly at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

Behavior Properties of Bridge by Non Destructive and Loading Test (비파괴 및 재하시험에 의한 노후 교량의 거동특성)

  • Min, Jeong-Ki;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.61-71
    • /
    • 2004
  • The performance evaluation and deflection of 3 spans concrete simplicity slab bridge analyzed by non-destructive and loading test. Compressive strength of slab and pier appeared in the range of each 353∼366 kgf/$cm^2$ and 152∼215 kgf/$cm^2$ in rebound number test. Also, it appeared that concrete quality of slab was good after performance improvement. The average compressive strength of slab by core picking appeared 229 kg/$cm^2$. In reinforcing bar arrangement test of span and member, it appeared that horizontal and vertical reinforcing bar was arranged to fixed interval. The value of calculation deflection that carried structural analysis with deflection analysis wave in static loading test appeared higher than that of experimental deflection and it appeared that hardness of this bridge was good. Maximum impact factor that estimated from deflection by running speed in dynamic loading test appeared by 0.216 in 10 km/hr running speed.