• Title/Summary/Keyword: Static Pressure Efficiency

Search Result 129, Processing Time 0.025 seconds

The ROP mechanism study in hard formation drilling using local impact method

  • Liu, Weiji;Zhu, Xiaohua;Zhou, Yunlai;Mei, Liu;Meng, Xiannan;Jiang, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.95-101
    • /
    • 2018
  • The low rate of penetration and short lifetime of drilling bit served as the most common problems encountered in hard formation drilling, thus leading to severe restriction of drilling efficiency in oil and gas reservoir. This study developed a new local impact drilling method to enhance hard formation drilling efficiency. The limitation length formulas of radial/lateral cracks under static indentation and dynamic impact are derived based on the experimental research of Marshall D.B considering the mud column pressure and confining pressure. The local impact rock breaking simulation model is conducted to investigate its ROP raising effect. The results demonstrate that the length of radial/lateral cracks will increase as the decrease of mud pressure and confining pressure, and the local impact can result in a damage zone round the impact crater which helps the rock cutting, thus leading to the ROP increase. The numerical results also demonstrate the advantages of local impact method for raising ROP and the vibration reduction of bit in hard formation drilling. This study has shown that the local impact method can help raising the ROP and vibration reduction of bit, and it may be applied in drilling engineering.

An Experimental Study on the Effect of heat exchanger on turbo fan for air conditioning (열교환기가 공기조화용 터보팬의 성능에 미치는 영향에 대한 실험적 연구)

  • Chang Seung-Yong;Nam Leem-Woo;Joo Won-Gu;Cho Kang-Rae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.615-618
    • /
    • 2002
  • Turbo-fan for ceiling cassette type air conditioner doesn't operate in general volute. It is operated by porous material, heat exchanger. Heat exchanger increases resistance of air conditioning system and disturbs exit-flow of impeller. Therefore it has some influences on impeller capacity. In this study, we want to how that influence of exchanger on impeller capacity for ceiling cassette type air conditioner. To research, we made circular case that didn't have asymmetric part unlike rectangular case. With and without heat exchanger we measured total pressure and static pressure of impeller and three-dimensional rear flow field From the result, a turbo fan , installed in the 35mm back of fan and operated in heat exchanger, experienced $2{\%}{\~}5{\%}$% total pressure loss over all flow rate. With heat exchanger impeller efficiency decrease as flow rate decrease when flow rate coefficient was below 0.18. Especially when flow rate coefficient was below 0.12, there was $20{\%}{\~}30{\%}$ decrease of impeller efficiency.

  • PDF

The analysis on centrifugal compressor rotating stall (원심압축기의 선회실속 분석)

  • Kim, Ji-Hwan;Kim, Kwang-Ho;Shin, You-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.834-839
    • /
    • 2003
  • In the present study, the performance characteristics and the number of stall cells during rotating stall of a centrifugal air compressor were experimentally investigated. If the flow coefficient is lower than 0.150, the static pressure at impeller inlet is higher than that at inlet duct And reverse flow is observed under these flow coefficient region. Maximum adiabatic efficiency is obtained for the tested compressor around flow coefficient 0.128, and it is independent of compressor rotating speed. The number of stall cells and their rotational speeds are distinctive features of the rotating stall phenomenon. The present study is mainly concerned with the number of stall cells and their rotational speeds. The interpretation method of visualization is based on the pressure distribution in the circumference pressure fields while plotting the pressure and its harmonics variations in time in polar coordinates.

  • PDF

Off-design performance analysis of radial inflow turbines with or without variable area guide vane (가변안내깃이 존재하거나 없는 구심터빈의 탈설계 성능해석)

  • 한기수;김광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2171-2180
    • /
    • 1991
  • An analysis model for off-design performance of radial inflow turbines with or without variable area guide vane is developed, where two important factors in loss models, total pressure ratio between variable area guide vane exit and scroll casing inlet and rotor loss coefficient are determined without experimental data. The analysis results show that the predicted trends with or without variable area guide vane are consistent with the experimental observations. The comparison of present method with the well-known NASA off-design performance analysis program shows that the mass flow rate and static efficiency by present analysis are in good agreement with those by the NASA program. Therefore, this method can be used to predict off-design performance of radial inflow turbines with validity of the loss models used by present analysis.

Numerical Performance Evaluation of an Ultra-small Lapple Cyclone Separator (초소형 Lapple 사이클론 집진기의 수치적 성능평가)

  • Park, Sumin;Kwon, Jae-Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.90-95
    • /
    • 2020
  • The purpose of this study is to numerically evaluate the collection performance of an ultra-small Lapple cyclone separator for 1~10 ㎛ particles introduced at flow rate of 10 L/min. The numerical evaluation reveals that a static pressure drop occurs more dominantly inside of the cyclone separator than at the inlet and the vortex finder. Also a fluid flow in the cyclone separator is confirmed to have a helical structure heading upward in the center of cyclone separator and downward in the vicinity of wall. The investigation on dust collection efficiency of the Lapple cyclone separator shows that particles of 4~8 ㎛ diameters are collected at very lower efficiency than other sizes. Then, the cut-point diameter of the cyclone separator is 1.48 ㎛.

An Experimental Study on Flow Characteristics in Volute of Centrifugal Turbomachinery (원심형 터보기계의 볼류트네의 유동특성에 관한 실험적 연구)

  • Jeon, Kyung-Joon;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.801-806
    • /
    • 2001
  • The objective of present study is to find the interaction between volute and impeller of the centrifugal turbomachinery with rectangular cross-sectional volute. Flow measurement were taken in shrouded impeller with 12 backward type blades by using a five-hole pressure probe. The measurements are carried out in 7 flow rate, respectively. Primary function of a centrifugal turbo machinery volute is to serve the flow from the impeller and diffuser to pipe system. For the off-design conditions, Influence of pressure distortion was shown by these measurements. As a result, It has caused the decrease of total efficiency of centrifugal turbomachinery. We have also taken data to design volute by these measurements.

  • PDF

Evaluation of Heat Balance for Cooling System of an Armored Installation in Small Space (좁은 공간 내의 밀폐형 장치 냉각시스템에 대한 열평형 평가)

  • Kim, Sung-Kwang;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the heat balance test of an engine was conducted, and the heat released to coolant is measured and corrected using a power adjustment factor for high fuel temperature to simulate heat rejection of the engine. An engine-converter matching simulation program which can compute the engine speed, transmission output speed, transmission input and output power is developed from the vehicle, transmission and engine performance curve. With this information and the engine heat rejection characteristics, the engine and transmission heat rejection rates can be determined at given condition. In analyzing the air mass flow, a sub program computing the air mass flow rate from the equation of the pressure balance between cooling fan static pressure rise and pressure losses of cooling components is developed.

Numerical And Experimental Study Of Single stage And Multistage Centrifugal Mixed Flow Submersible Borewell Pumps

  • Murugesan, C.;Rudramoorthy, R.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.107-118
    • /
    • 2016
  • This paper focuses on the single stage and multistage performance characteristics of centrifugal mixed flow submersible borewell pump. This study reveals that the performance of single stage pump is higher than that of multistage pumps. The head, input power and efficiency of single stage pump are higher than the per stage head, per stage input power and efficiency of multistage pumps. This study is divided into three parts. In the first part, five prototype pumps were made in single stage and multistage construction and the performance tests were conducted. In the second part, numerical validation has been done for different turbulence models and grid sizes. k-Omega SST model has been selected for the performance simulation and was validated with the performance of the test pump with static pressure tappings. In the third part, single and three stage pump performance were simulated numerically and compared with experimental results. The detailed analysis of pressure and velocity distributions reveals the difference in performance of single and three stage pump, due to non-uniform flow and difference in averaged flow velocities at the subsequent impeller inlets except the 1st stage impeller inlet.

Numerical Analysis of the Whole Field Flow in a Centrifugal Fan for Performance Enhancement - The Effect of Boundary Layer Fences of Different Configurations

  • Karanth, K. Vasudeva;Sharma, N. Yagnesh
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.110-120
    • /
    • 2009
  • Generally the fluid flows within the centrifugal impeller passage as a decelerating flow with an adverse pressure gradient along the stream wise path. This flow tends to be in a state of instability with flow separation zones on the suction surface and on the front shroud. Hence several experimental attempts were earlier made to assess the efficacy of using boundary layer fences to trip the flow in the regions of separation and to make the flow align itself into stream wise direction so that the losses could be minimized and overall efficiency of the diffusion process in the fan could be increased. With the development of CFD, an extensive numerical whole field analysis of the effect of boundary layer fences in discrete regions of suspected separation points is possible. But it is found from the literature that there have been no significant attempts to use this tool to explore numerically the utility of the fences on the flow field. This paper attempts to explore the effect of boundary layer fences corresponding to various geometrical configurations on the impeller as well as on the diffuser. It is shown from the analysis that the fences located on the impellers near the trailing edge on pressure side and suction side improves the static pressure recovery across the fan. Fences provided at the radial mid-span on the pressure side of the diffuser vane and near the leading edge and trailing edge of the suction side of diffuser vanes also improve the static pressure recovery across the fan.

Numerical study on the Performance Improvement of the Sirocco Fan in a Range Hood (레인지 후드용 시로코 홴의 성능 향상을 위한 연구)

  • Park, Sang-Tae;Choi, Young-Seok;Park, Moon-Soo;Kim, Cheol-Ho;Kwon, Oh-Myoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.572-577
    • /
    • 2004
  • This paper presents numerical study on the performance improvement of the sirocco fan in a range hood. The performance of sirocco fan means a higher flowrate, a higher static pressure and a lower required motor power in a fixed geometry constraint. Various impeller geometric parameters, such as blade profile, blade diameter, blade thickness profile and blade exit angle, were investigated by numerically and the results were compared with each other to know the effects on the performance. In this approach, the volute geometry were fixed with the original shape. The numerical results show that the blade profile with airfoil shape and small exit blade thickness increases the performance. The blade exit angle shows optimum angle within a varied range. The efficiency of the optimized exit angle was about $10\%$ higher than the base blade exit angle and the static pressure was about $28\%$ higher at the flow coefficient 0.22.

  • PDF