• Title/Summary/Keyword: Static Offloading

Search Result 11, Processing Time 0.029 seconds

Study on Program Partitioning and Data Protection in Computation Offloading (코드 오프로딩 환경에서 프로그램 분할과 데이터 보호에 대한 연구)

  • Lee, Eunyoung;Pak, Suehee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.11
    • /
    • pp.377-386
    • /
    • 2020
  • Mobile cloud computing involves mobile or embedded devices as clients, and features small devices with constrained resource and low availability. Due to the fast expansion of smart phones and smart peripheral devices, researches on mobile cloud computing attract academia's interest more than ever. Computation offloading, or code offloading, enhances the performance of computation by migrating a part of computation of a mobile system to nearby cloud servers with more computational resources through wired or wireless networks. Code offloading is considered as one of the best approaches overcoming the limited resources of mobile systems. In this paper, we analyze the factors and the performance of code offloading, especially focusing on static program partitioning and data protection. We survey state-of-the-art researches on analyzed topics. We also describe directions for future research.

Pratical Offloading Methods and Cost Models for Mobile Cloud Computing (모바일 클라우드 컴퓨팅을 위한 실용적인 오프로딩 기법 및 비용 모델)

  • Park, Min Gyun;Zhe, Piao Zhen;La, Hyun Jung;Kim, Soo Dong
    • Journal of Internet Computing and Services
    • /
    • v.14 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • As a way of augmenting constrained resources of mobile devices such as CPU and memory, many works on mobile cloud computing (MCC), where mobile devices utilize remote resources of cloud services or PCs, /have been proposed. A typical approach to resolving resource problems of mobile nodes in MCC is to offload functional components to other resource-rich nodes. However, most of the current woks do not consider a characteristic of dynamically changed MCC environment and propose offloading mechanisms in a conceptual level. In this paper, in order to ensure performance of highly complex mobile applications, we propose four different types of offloading mechanisms which can be applied to diverse situations of MCC. And, the proposed offloading mechanisms are practically designed so that they can be implemented with current technologies. Moreover, we define cost models to derive the most sutilable situation of applying each offloading mechanism and prove the performance enhancement through offloadings in a quantitative manner.

Adaptive Application Component Mapping for Parallel Computation Offloading in Variable Environments

  • Fan, Wenhao;Liu, Yuan'an;Tang, Bihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4347-4366
    • /
    • 2015
  • Distinguished with traditional strategies which offload an application's computation to a single server, parallel computation offloading can promote the performance by simultaneously delivering the computation to multiple computing resources around the mobile terminal. However, due to the variability of communication and computation environments, static application component multi-partitioning algorithms are difficult to maintain the optimality of their solutions in time-varying scenarios, whereas, over-frequent algorithm executions triggered by changes of environments may bring excessive algorithm costs. To this end, an adaptive application component mapping algorithm for parallel computation offloading in variable environments is proposed in this paper, which aims at minimizing computation costs and inter-resource communication costs. It can provide the terminal a suitable solution for the current environment with a low incremental algorithm cost. We represent the application component multi-partitioning problem as a graph mapping model, then convert it into a pathfinding problem. A genetic algorithm enhanced by an elite-based immigrants mechanism is designed to obtain the solution adaptively, which can dynamically adjust the precision of the solution and boost the searching speed as transmission and processing speeds change. Simulation results demonstrate that our algorithm can promote the performance efficiently, and it is superior to the traditional approaches under variable environments to a large extent.

A Function Level Static Offloading Scheme for Saving Energy of Mobile Devices in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 모바일 기기의 에너지 절약을 위한 함수 수준 정적 오프로딩 기법)

  • Min, Hong;Jung, Jinman;Heo, Junyoung
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.707-712
    • /
    • 2015
  • Mobile cloud computing is a technology that uses cloud services to overcome resource constrains of a mobile device, and it applies the computation offloading scheme to transfer a portion of a task which should be executed from a mobile device to the cloud. If the communication cost of the computation offloading is less than the computation cost of a mobile device, the mobile device commits a certain task to the cloud. The previous cost analysis models, which were used for separating functions running on a mobile device and functions transferring to the cloud, only considered the amount of data transfer and response time as the offloading cost. In this paper, we proposed a new task partitioning scheme that considers the frequency of function calls and data synchronization, during the cost estimation of the computation offloading. We also verified the energy efficiency of the proposed scheme by using experimental results.

Static and dynamic mooring analysis - Stability of floating production storage and offloading (FPSO) risers for extreme environmental conditions

  • Rho, Yu-Ho;Kim, Kookhyun;Jo, Chul-Hee;Kim, Do-Youb
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.179-187
    • /
    • 2013
  • Floating production storage and offloading (FPSO) facilities are used at most of the offshore oil fields worldwide. FPSO usage is expected to grow as oil fields move to deeper water, thus requiring the reliability and stability of mooring wires and risers in extreme environmental conditions. Except for the case of predictable attack angles of external loadings, FPSO facilities with turret single point mooring (SPM) systems are in general use. There are two types of turret systems: permanent systems and disconnectable turret mooring systems. Extreme environment criteria for permanent moorings are usually based on a 100-year return period event. It is common to use two or three environments including the 100-year wave with associated wind and current, and the 100-year wind with associated waves and current. When fitted with a disconnectable turret mooring system, FPSOs can be used in areas where it is desirable to remove the production unit from the field temporarily to prevent exposure to extreme events such as cyclones or large icebergs. Static and dynamic mooring analyses were performed to evaluate the stability of a spider buoy after disconnection from a turret during cyclone environmental conditions.

Validation of the vehicle dynamic model for the static vehicle testing (정차상태 시험 결과를 이용한 차량동특성 해석 모델의 검증)

  • Park, Kil-Bae;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.317-325
    • /
    • 2011
  • Vehicle model validation for the static vehicle testing has been done by comparison of the simulation results and test results and the parameters of the vehicle model to be used in the simulation have been adjusted to reflect the measured behaviour. The vehicle model fort the simulation should be validated by suitable tests and/or practical experience. The static vehicle test used to validate the vehicle model are the weight measurement, the wheel offloading test, the bogie rotational resistance test and the sway test. Finally, the computer simulation model has been validated and using the validated vehicle model the acceptance of the vehicle safety of the resistance to flange climbing derailment at low speed can be examined.

  • PDF

Service Mobility Support Scheme in SDN-based Fog Computing Environment (SDN 기반 Fog Computing 환경에서 서비스 이동성 제공 방안)

  • Kyung, Yeun-Woong;Kim, Tae-Kook
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.39-44
    • /
    • 2020
  • In this paper, we propose a SDN-based fog computing service mobility support scheme. Fog computing architecture has been attracted because it enables task offloading services to IoT(Internet of Things) devices which has limited computing and power resources. However, since static as well as mobile IoT devices are candidate service targets for the fog computing service, the efficient task offloading scheme considering the mobility should be required. Especially for the IoT services which need low-latency response, the new connection and task offloading delay with the new fog computing node after handover can occur QoS(Quality of Service) degradation. Therefore, this paper proposes an efficient service mobility support scheme which considers both task migration and flow rule pre-installations. Task migration allows for the service connectivity when the fog computing node needs to be changed. In addition, the flow rule pre-installations into the forwarding nodes along the path after handover enables to reduce the connection delay and service interruption time.

An Application of Topology Optimization for Strength Design of FPSO Riser Support Structure (FPSO Riser 지지 구조의 강도설계에 대한 위상최적화 응용)

  • Song, Chang-Yong;Choung, Joon-Mo;Shim, Chun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.153-160
    • /
    • 2010
  • This paper deals with the topology optimized design of the riser support structures for floating production storage and offloading units (FPSOs) under global and local loading conditions. For a preliminary study and validation of the numerical approach, a simplified plate under static loading is first evaluated with the representative topology optimization methods, the Homogenization Design Method (HDM) and Density Method (DM) or Simple Isotropic Material with Penalization (SIMP). In the context of the corresponding riser support structures, the design problem is formulated such that structure shapes based on design domain variables are determined by minimizing the compliance subject to a mass target, considering the stress criterion. An initial design model is generated based on an actual FPSO riser support configuration. The topology optimization results present improved design performances under various loading conditions, while staying within the allowable limit of the offshore area.

A Study on Out-of-Plane Bending Mechanism of Mooring Chains for Floating Offshore Plants (부유식 해양플랜트 계류 체인의 면외굽힘 거동에 대한 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo;Kang, Chan-Hoe
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.580-588
    • /
    • 2010
  • OPB(out-of-plane bending)-induced failure of mooring chain was firstly addressed by CALM (catenary anchor leg mooring)-type offloading buoy, located approximately one mile away from the bow of the Girassol FPSO which was installed offshore area of Angola in September 2001. This study deals with verifying the load transfer mechanism between the first free chain link and connected two chain links inside the chain hawse. OPB moment to angle variation relationships are proposed by extensive parametric study where the used design variables are static friction coefficients, proof test loads, nominal tension forces, chain link diameters, chain link grades and chain link types. The stress ranges due to OPB moments are obtained using nonlinear FEAs (finite element analyses). Final stress ranges are derived considering ones from IPT (in-plane tension) forces. Also a formula for OPB fatigue assessment is briefly introduced.

Effects of geometric shape of LWSCR (lazy-wave steel catenary riser) on its global performance and structural behavior

  • Kim, Seungjun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.247-279
    • /
    • 2018
  • This study aims to investigate the behavioral characteristics of the LWSCR (lazy-wave steel catenary riser) for a turret-moored FPSO (Floating Production Storage Offloading) by using fully-coupled hull-mooring-riser dynamic simulation program in time domain. In particular, the effects of initial geometric profile on the global performance and structural behavior are investigated in depth to have an insight for optimal design. In this regard, a systematic parametric study with varying the initial curvature of sag and arch bend and initial position of touch down point (TDP) is conducted for 100-yr wind-wave-current (WWC) hurricane condition. The FPSO motions, riser dynamics, constituent structural stress results, accumulated fatigue damage of the LWSCR are presented and analyzed to draw a general trend of the relationship between the LWSCR geometric parameters and the resulting dynamic/structural performance. According to this study, the initial curvature of the sag and arch bend plays an important role in absorbing transferred platform motions, while the position of TDP mainly affects the change of static-stress level.