• 제목/요약/키워드: Static Load Modeling

검색결과 150건 처리시간 0.03초

크롤러형 굴삭기의 동역학적 모델 개발 및 시뮬레이션 (Dynamic Model Development and Simulation of Crawler Type Excavator)

  • 권순기
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.642-651
    • /
    • 2009
  • The history of excavator design is not long enough which still causes most of the design considerations to be focused on static analysis or simple functional improvement based on static analysis. However, the real forces experiencing on each component of excavator are highly transient and impulsive. Therefore, the prediction and the evaluation of the movement of the excavator by dynamic load in the early design stage through the dynamic transient analysis of the excavator and ensuring of design technique plays an importance role to reduce development-cost, shorten product-deliver, decrease vehicle-weight and optimize the system design. In this paper, Commercial software DADS and ANSYS help to develop the track model of the crawler type excavator, and to evaluate the performance and the dynamic characteristics of excavator with various simulations. For that reason, the track of crawler type excavator is modelled with DADS Track Vehicle Superelement, and the reaction forces on the track rollers were predicted through the driving simulation. Also, the upper frame and cabin vibration characteristics, at the low RPM idle state, were evaluated with engine rigid body modelling. And flexibility body effects were considered to determine the more accurate joint reaction forces and accelerations under the upper frame swing motion.

  • PDF

STATCOM을 이용한 교류 전기철도 급전시스템의 전압강하 보상 (Compensate Voltage Drop for Autotransformer-Fed AC Electric Railroad System with Single-Phase STATCOM)

  • 정현수;이승혁;김진오
    • 조명전기설비학회논문지
    • /
    • 제16권5호
    • /
    • pp.53-60
    • /
    • 2002
  • 본 논문에서는 정전류 부하모델 교류 전기철도 AT 급전시스템을 회로망 해석법(Loop Equation Method)을 이용하여 실제 급전시스템과 유사하게 제약조건을 두고 여러 경우를 가정하여 모델링 하였다. 이 방법을 통해 앞으로 건설될 고속 전기철도 급전시스템의 전력품질에 영향을 줄 수 있는 전압강하에 주안점을 두고 정상급전의 경우뿐만 아니라 연장급전의 경우를 새롭게 확대 해석하였으며 이 결과를 동적 시뮬레이션 프로그램인 PSCAD /EMTDC를 이용하여 그 정확성과 실용성을 검증하였다. 또한 사례연구를 통해 전압 보상기를 설치하지 않는 경우와 STATCOM을 설치한 경우의 전압강하 보상효과를 PSCAD/EMTDC로 시뮬레이션 하여 검증하였다.

풍하중을 받는 송전철탑의 정적, 동적 및 좌굴해석 (Static, Dynamic and Buckling Analyses of a Power Transmission Tower under Wind Load)

  • 정형조;신동승;문병욱;박지훈;이성경;민경원
    • 한국전산구조공학회논문집
    • /
    • 제19권4호
    • /
    • pp.369-374
    • /
    • 2006
  • 가섭선 및 애자가 연결되어 있는 복잡한 구조물인 송전철탑의 3차원 모델링을 통하여 동특성을 파악하고, 풍하중에 대한 응답 특성을 정적, 동적 및 좌굴 해석을 가섭선의 절단 유무에 따라 분석하였다. 우선, 고유치해석을 통해, 송전철탑이라는 구조시스템이 일반 건축물과는 달리 극소수의 저차 모드가 구조물의 동적 거동을 좌우하지 않고, 상대적으로 많은 모드들이 동적 거동에 기여한다는 것을 확인하였다. 두 번째로, 정적 해석과 좌굴 해석을 통해, 대상 구조물이 정적인 개념의 풍하중에 대해서 구조적으로 안전하고 좌굴에 대해서도 충분한 안전율을 확보하고 있음을 확인하였다 그러나, 모든 가섭선이 단절되는 극단적인 경우에는 안전율이 상당히 낮아졌으며 이러한 경우에 구조물의 붕괴 및 전도를 방지할 대책에 대한 검토가 필요하다고 사료된다 마지막으로, 풍하중의 시간에 따른 변화를 고려한 동적해석을 통해, 풍하중의 동적 변동성분이 구조물의 응답을 증가시키고 있음을 확인하였다.

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.

대형 풍력로터시스템의 정적 공탄성해석을 위한 등가강성모델링 기법 적용에 관한 연구 (Study on Application of Equivalent Stiffness Modeling Method for Static Aeroelastic Analysis of Large Scale Wind Turbine Rotor System)

  • 차진현;구태완;김정;강범수;송우진
    • 한국정밀공학회지
    • /
    • 제29권11호
    • /
    • pp.1236-1244
    • /
    • 2012
  • A equivalent stiffness modeling has been performed for extracting the equivalent stiffness properties which are orthotropic elastic model from a large scale wind turbine rotor blade so that structure model can be constructed more simply for the three dimensional static aeroelastic analysis. In order to present the procedure of equivalent stiffness modeling, NREL 5MW class wind turbine rotor having the three stiffness information which are flapewise, edgewise and torsional stiffness was chosen. This method is based on applying unit moment at the tip of the blade as well as fixing all degree of freedom at the blade root and calculating the displacement from the load analysis to obtain the elastic modulus corresponding to equivalent stiffness referred to the NREL reports on blade divided into 5 sections respectively. In addition, one section was divided into 3 parts and the trend functions were used to make the equivalent stiffness model more correctly and quickly. Through the comparison of stiffness between the reference values and calculated values from equivalent stiffness model, the investigation of the accuracy on the stiffness values and the efficiency for constructing the model was conducted.

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • 제11권6호
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.

Carbon Free를 위한 도서지역용 독립전원계통의 모델링 및 운용알고리즘에 관한 연구 (A Study on the Modeling and Operation Algorithm of Independent Power System for Carbon Free)

  • 왕종용;김병기;박재범;김병목;김응상;노대석
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.760-768
    • /
    • 2016
  • Recently, as one of the policies for carbon free operation method of independent power system replacing diesel generator with renewable energy such as wind power and photovoltaic(PV) system has been presented. Therefore, this paper proposes an operation algorithm and modeling of independent power system by considering CVCF(constant voltage constant frequency) ESS(energy storage system) for constant frequency and voltage, LC(load control) ESS for demand and supply balancing and SVC(static var compensator) for reactive power compensation. From the simulation results based on the various operation scenario, it is confirmed that proposed operation algorithm and modeling may contribute stable operation and carbon free in independent power system.

PACAD/EMTDC을 이용한 유도기 부하를 고려한 DSTATCOM의 보상제어에 관한 연구 (A Study on the Compensation Control of Distribution Static Compensator Considering Induction Motor Load Using PSCAD/EMTDC)

  • 이명언;조명현
    • 전자공학회논문지 IE
    • /
    • 제43권1호
    • /
    • pp.32-38
    • /
    • 2006
  • 유도전동기는 기동 시 전류가 정격전류의 6$\sim$8배에 이르기 때문에 경 부하로 운전하는 경우에는 역률을 떨어뜨릴 뿐만 아니라 과다한 기동전류로 인해 계통전원에 순간전압 강하를 유발시켜 선로의 전력품질저하가 심각하게 대두되고 있다. 본 논문에서는 PSCAD/EMTDC 패키지를 이용하여 IEEE에서 제시한 배전 계통 13버스 모형 모델 및 유도기 부하를 모델링 하여 사고모의 및 DSTATCOM의 보상효과를 시뮬레이션을 통하여 보였다.

Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns

  • Mahdavi, Navideh;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.703-710
    • /
    • 2019
  • While fiber-reinforced plastic (FRP) materials have been largely used in the retrofitting of concrete buildings, its application has been limited because of some problems such as de-bonding of FRP layers from the concrete surface. This paper is the part of a wide experimental and analytical investigation about flexural retrofitting of reinforced concrete (RC) columns using FRP and mechanical fasteners (MF). A new generation of MF is proposed, which is applicable for retrofitting of RC columns. Furthermore, generally, to evaluate a retrofitted structure the nonlinear static and dynamic analyses are the most accurate methods to estimate the performance of a structure. In the nonlinear analysis of a structure, accurate modeling of structural elements is necessary for estimation the reasonable results. So for nonlinear analysis of a structure, modeling parameters for beams, columns, and beam-column joints are essential. According to the concentrated hinge method, which is one of the most popular nonlinear modeling methods, structural members shall be modeled using concentrated or distributed plastic hinge models using modeling parameters. The nonlinear models of members should be capable of representing the inelastic response of the component. On the other hand, in performance based design to make a decision about a structure or design a new one, numerical acceptance should be determined. Modeling parameters and numerical acceptance criteria are different for buildings of different types and for different performance levels. In this paper, a new method was proposed for FRP retrofitted columns to avoid FRP debonding. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and a good composition of FRP and RC column was achieved. Moreover, the modeling parameters and acceptance criteria were presented, which were derived from the experimental study in order to use in nonlinear analysis and performance-based design approach.