• 제목/요약/키워드: Static Implicit

Search Result 64, Processing Time 0.029 seconds

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

Dynamic Decision Making using Social Context based on Ontology (상황 온톨로지를 이용한 동적 의사결정시스템)

  • Kim, Hyun-Woo;Sohn, M.-Ye;Lee, Hyun-Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.43-61
    • /
    • 2011
  • In this research, we propose a dynamic decision making using social context based on ontology. Dynamic adaptation is adopted for the high qualified decision making, which is defined as creation of proper information using contexts depending on decision maker's state of affairs in ubiquitous computing environment. Thereby, the context for the dynamic adaptation is classified as a static, dynamic and social context. Static context contains personal explicit information like demographic data. Dynamic context like weather or traffic information is provided by external information service provider. Finally, social context implies much more implicit knowledge such as social relationship than the other two-type context, but it is not easy to extract any implied tacit knowledge as well as generalized rules from the information. So, it was not easy for the social context to apply into dynamic adaptation. In this light, we tried the social context into the dynamic adaptation to generate context-appropriate personalized information. It is necessary to build modeling methodology to adopt dynamic adaptation using the context. The proposed context modeling used ontology and cases which are best to represent tacit and unstructured knowledge such as social context. Case-based reasoning and constraint satisfaction problem is applied into the dynamic decision making system for the dynamic adaption. Case-based reasoning is used case to represent the context including social, dynamic and static and to extract personalized knowledge from the personalized case-base. Constraint satisfaction problem is used when the selected case through the case-based reasoning needs dynamic adaptation, since it is usual to adapt the selected case because context can be changed timely according to environment status. The case-base reasoning adopts problem context for effective representation of static, dynamic and social context, which use a case structure with index and solution and problem ontology of decision maker. The case is stored in case-base as a repository of a decision maker's personal experience and knowledge. The constraint satisfaction problem use solution ontology which is extracted from collective intelligence which is generalized from solutions of decision makers. The solution ontology is retrieved to find proper solution depending on the decision maker's context when it is necessary. At the same time, dynamic adaptation is applied to adapt the selected case using solution ontology. The decision making process is comprised of following steps. First, whenever the system aware new context, the system converses the context into problem context ontology with case structure. Any context is defined by a case with a formal knowledge representation structure. Thereby, social context as implicit knowledge is also represented a formal form like a case. In addition, for the context modeling, ontology is also adopted. Second, we select a proper case as a decision making solution from decision maker's personal case-base. We convince that the selected case should be the best case depending on context related to decision maker's current status as well as decision maker's requirements. However, it is possible to change the environment and context around the decision maker and it is necessary to adapt the selected case. Third, if the selected case is not available or the decision maker doesn't satisfy according to the newly arrived context, then constraint satisfaction problem and solution ontology is applied to derive new solution for the decision maker. The constraint satisfaction problem uses to the previously selected case to adopt and solution ontology. The verification of the proposed methodology is processed by searching a meeting place according to the decision maker's requirements and context, the extracted solution shows the satisfaction depending on meeting purpose.

A Study of the Compound Choking Phenomenon in Gas Flows (기체유동에서 발생하는 복합초킹 현상에 관한 연구)

  • Lee, Jun-Hee;Baek, Seung-Cheol;Choi, Bo-Gyu;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • Compound choking frequently occurs at a minimum area of the flow passage, where two or more streams which have different stagnation properties are merged. This phenomenon is especially important in that the flow choking may not be given by Mach number, M=1 at the nozzle throat. In order to obtain a detailed understanding of the flow characteristics involved in the compound flow choking, the two-dimensional, compressible, Wavier-Stokes equations are solved using a fully implicit finite volume method and the predicted solutions are compared with the results of the one-dimensional theoretical analysis. Stagnation pressure and temperature of each stream are changed to investigate the effects on the compound choking. The results show that stagnation pressures of each stream affect Mach number and static pressure distributions downstream of the exit of the convergent nozzle. However, the flow characteristics of the compound choking are not significantly dependent on the total temperature ratio.

Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects (충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Seok-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.167-174
    • /
    • 2008
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Ko H.H.;Ahn H.G.;Lee C.H.;Ahn B.I.;Moon W.S.;Jung D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1980-1983
    • /
    • 2005
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of ide. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Ko Hyung-Hoon;Ahn Hyun-Gil;Lee Chan-H;Ahn Byung-Il;Moon Won-Sub;Jung Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.118-124
    • /
    • 2006
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excel lent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behavior. Among Finite element method, the static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focused on the drawing ability factors on auto-body panel stamping by AUTOFORM with using tool planning alloy to reduce law price as well as high precision front Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

CFD modelling of free-flight and auto-rotation of plate type debris

  • Kakimpa, B.;Hargreaves, D.M.;Owen, J.S.;Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.D.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.169-189
    • /
    • 2010
  • This paper describes the use of coupled Computational Fluid Dynamics (CFD) and Rigid Body Dynamics (RBD) in modelling the aerodynamic behaviour of wind-borne plate type objects. Unsteady 2D and 3D Reynolds Averaged Navier-Stokes (RANS) CFD models are used to simulate the unsteady and non-uniform flow field surrounding static, forced rotating, auto-rotating and free-flying plates. The auto-rotation phenomenon itself is strongly influenced by vortex shedding, and the realisable k-epsilon turbulence modelling approach is used, with a second order implicit time advancement scheme and equal or higher order advection schemes for the flow variables. Sequentially coupling the CFD code with a RBD solver allows a more detailed modelling of the Fluid-Structure Interaction (FSI) behaviour of the plate and how this influences plate motion. The results are compared against wind tunnel experiments on auto-rotating plates and an existing 3D analytical model.

On the Prediction of the Wrinkling Initiation in Sheet Metal Forming Processes (박판성형 공정에서 발생하는 주름의 예측에 관하여)

  • Kim J. B.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.124-127
    • /
    • 2000
  • The finite element analyses of the wrinkling initiation and growth in the sheet metal forming process provide the detailed information about the wrinkling behavior of sheet metal. The direct analyses of the wrinkling initiation and growth, however, bring about a little difficulty in complex industrial problems because it needs large memory size and long computation time. For the description of wrinkling growth, the mesh elements should be sufficiently small and the size of finite element matrix becomes large. In the static implicit finite element method therefore, the direct analysis of wrinkling growth in a complex sheet metal forming process is rather difficult. From the industrial viewpoint of tooling design, the readily available information of possibility and location of wrinkling is sometimes more preferable to the detailed time-consuming information. In the present study, therefore, the wrinkling factor that shows locations and relative possibility of wrinkling initiation is proposed as a convenient tool of relative wrinkling estimation based on the energy criterion. The location and relative possibility of wrinkling initiation are predicted by calculating the wrinkling factor in various sheet metal forming processes such as cylindrical cup deep drawing, spherical cup deep drawing, and elliptical cup deep drawing. The wrinkling factor is also implemented in the analysis of the door inner stamping process to predict wrinkling.

  • PDF

The Die Development of REF SILL OTR-R/L Auto-Body Panel by using Forming Analysis (성형해석을 통한 REF SILL OTR-R/L 차체판넬 금형개발)

  • Jung, D.W.;Lee, C.H.;Moon, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.81-85
    • /
    • 2006
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

Personalized Digital Music Recommendation Based on the Collaborative Filtering (협동적 여과를 기반으로 하는 개인화된 디지털 음악 추천)

  • Kim, Jun-Tae;Kim, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.8 no.4
    • /
    • pp.521-529
    • /
    • 2007
  • In this paper, we introduce a music recommendation system that automatically recommends music according to users' musical tastes. The recommendation system uses a graph-based collaborating filtering in which similarities between musics are saved as a graph, and so it can perform fast recommendation based on the implicit preference information. It also has capability of recommending music according to users' dynamically changing preferences as well as users' static preferences. The recommendation server is implemented as an independent server using Java, and communicates with clients according to a specified protocol. A demo web site has been built by using the server and music download data from actual users, and the accuracy of recommendation has been measured through experiments.

  • PDF