• Title/Summary/Keyword: Static Hysteresis

Search Result 117, Processing Time 0.03 seconds

Fatigue Analysis of Fiber-Reinforced Composites Using Damage Mechanics (손상역학을 이용한 섬유강화 복합재료의 피로해석)

  • Lim Dong-Min;Yoon Ihn-Soo;Kang Ki-Weon;Kim Jung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.112-119
    • /
    • 2006
  • Due to their intrinsic anisotropy, composite materials show quite complicated damage mechanism with their fiber orientation and stacking sequence and especially, their fatigue damage process is sequential occurrence of matrix cracking, delamination and fiber breakage. In the study, to propose new model capable of describing damage mechanism under fatigue loading, fatigue analysis of composite laminates based on damage mechanics, are performed. The average stress is disassembled with stress components of matrix, fiber and interlaminar interface through stress analysis. Each stress components are used to assess static damage analysis based on continuum damage mechanics (C.D.M.). Fatigue damage curves are obtained from hysteresis loop and assessed by the fatigue damage analysis. Then, static and fatigue damage analysis are combined. Expected results such as stress-cycle relation are verified by the experimental results of fatigue tests.

Effect of loading rate on mechanical behavior of SRC shearwalls

  • Esaki, Fumiya;Ono, Masayuki
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.201-212
    • /
    • 2001
  • In order to investigate the effect of the loading rate on the mechanical behavior of SRC shearwalls, we conducted the lateral loading tests on the 1/3 scale model shearwalls whose edge columns were reinforced by H-shaped steel. The specimens were subjected to the reversed cyclic lateral load under a variable axial load. The two types of loading rate, 0.01 cm/sec for the static loading and 1 cm/sec for the dynamic loading were adopted. The failure mode in all specimens was the sliding shear of the in-filled wall panel. The edge columns did not fail in shear. The initial lateral stiffness and lateral load carrying capacity of the shearwalls subjected to the dynamic loading were about 10% larger than those subjected to the static loading. The effects of the arrangement of the H-shaped steel on the lateral load carrying capacity and the lateral load-displacement hysteresis response were not significant.

A Study on the Dynamic Stall Characteristics of an Elliptical Airfoil by Flow Pattern Measured by PIV (PIV 측정 흐름형태에 의한 타원형 날개꼴의 동적 실속 특성 연구)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jung, Hyong-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.116-123
    • /
    • 2005
  • An experimental investigation on the static and dynamic stall characteristics of elliptic airfoil was performed by PIV velocity field measurements. The flow Reynolds number was $3.13{\times}10^5$ and the reduced frequency of the pitch oscillation ranged from 0.075 to 0.125. The onset of static stall was caused by boundary layer separation which started at the trailing edge and progressed toward the leading edge. However, dynamic stall was caused by the vortex shed at the leading edge region and the flow field showed a vortex dominated flow with turbulent separation and alternate vortex shedding. The increase of reduced frequency increased the dynamic stall angle of attack and intensified the flow hysteresis in the down-stroke phase.

Effect of Spool-Sleeve Geometry on Static Pressure Characteristics of Servo Valves (서보밸브 스풀-슬리브 형상공차가 압력 정특성에 미치는 영향 연구)

  • Kim, Sung Dong;Son, Sung Hoe;Ham, Young Bog
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.34-42
    • /
    • 2016
  • This study studied how the clearance, overlap and mismatch errors of spool-sleeve affect the static pressure characteristics of a servo valve. A computer simulation model was established as a direct acting servo valve and a series of simulations was conducted for various values of clearance, overlap and mismatch errors. Pressure gain decreased as the clearance increased. The overlap also affects the pressure gain and was similar to the effect of clearance. Asymmetry of the pressure plot got worse and worse as the mismatch error increased.

A Study of Characteristics of Water Droplets on Various Nanoscale Structures Using Molecular Dynamics (분자동역학을 이용한 다양한 구조물 위의 수액적의 특성에 대한 연구)

  • Lee, Kwang Ho;Kwon, Tae Woo;Ha, Man Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • This study numerically investigated statistic and dynamic behaviors of the water droplet on plate with or without various structured-pillars at nano-scale by molecular dynamics simulation. This study considered smooth plate, plate with the rectangular-structured pillar, and the plate with dual-structured pillar under various characteristic energy conditions. The static behavior of water droplet depending on the plate shape, plate surface energy, and the pillar characteristics were examined. After the water droplet reaches its steady state, this study investigated the dynamic behavior of the water droplet by applying a constant force. Finally, this study investigated the static and dynamic behaviors of the water droplet by measuring its contact angle and contact angle hysteresis. As a result, we found that the structure was more hydrophobic.

Upgrading equivalent static method of seismic designs to performance-based procedure

  • Allahvirdizadeh, Reza;Mohammadi, Mohammad Ali
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.849-865
    • /
    • 2016
  • Beside the invaluable advancements in constructing more secure buildings, the post-earthquake inspections have reported considerable damages. In other words, the modern buildings satisfactorily decrease fatalities but the monetary impacts still mostly remain an unsolved concern of the stakeholders, the insurance companies and society together. Therefore, the fundamental target of the researches shifted from current force-based seismic design regulations to the Performance-Based earthquake engineering (PBEE). At the moment, some probabilistic approaches, such as PEER framework have been developed to predict the performance of building at any desired hazard levels. These procedures are so time-consuming, to which many details are needed to be assigned. It causes their usage to be limited. On that account, developing more straightforward methods seems indispensable. The main objective of the present paper is to adapt an equivalent static method in different damage states. Consequently, constant damage spectrums corresponding to different limit states, soil types, ductility and fundamental periods are plotted and tri-linear formulas are proposed for further applications. Moreover, the sensitivity of outcomes to the employed hysteresis model, ductility, viscous damping and site soil type is investigated. Finally, a case study building with moment-resisting R.C. frame is evaluated based on the both of new and current methods to ensure applicability of the proposed method.

Optimal Design of FRP Taper Spring Using Response Surface Analysis (반응표면분석법을 이용한 FRP Leaf Spring의 최적설계)

  • 임동진;이윤기;김민호;윤희석
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • The present paper is concerned with the optimum design of taper spring, in which the static spring rate of the fiber-reinforcement composite material spring is fitted to that of the steel leaf spring. The thickness and width of springs were selected as design variables. The object functions of the regression model were obtained through the analysis with a common analytic program. After regression coefficients were calculated to get functions of the regression model, optimal solutions were calculated with DOT. E-glass/epoxy and carbon/epoxy were used as fiber reinforcement materials in the design, which were compared and analyzed with the steel leaf spring. The result of the static spring rates show that optimized composite leaf springs agree with steel leaf spring within 1%.

A load-bearing structural element with energy dissipation capability under harmonic excitation

  • Pontecorvo, Michael E.;Barbarino, Silvestro;Gandhi, Farhan S.;Bland, Scott;Snyder, Robert;Kudva, Jay;White, Edward V.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.345-365
    • /
    • 2015
  • This paper focuses on the design, fabrication, testing and analysis of a novel load-bearing element with energy dissipation capability. A single element comprises two von-Mises trusses (VMTs), which are sandwiched between two plates and connected to dashpots that stroke as the VMTs cycle between stable equilibrium states. The elements can be assembled in-plane to form a large plate-like structure or stacked with different properties in each layer for improved load-adaptability. Also introduced in the elements are pre-loaded springs (PLSs) that provide high initial stiffness and allow the element to carry a static load even when the VMTs cannot under harmonic disturbance input. Simulations of the system behavior using the Simscape environment show good overall correlation with test data. Good energy dissipation capability is observed over a frequency range from 0.1 Hz to 2 Hz. The test and simulation results show that a two layer prototype, having one soft VMT layer and one stiff VMT layer, can provide good energy dissipation over a decade of variation in harmonic load amplitude, while retaining the ability to carry static load due to the PLSs. The paper discusses how system design parameter changes affect the static load capability and the hysteresis behavior.

Superhydrophobic Surfaces for condensation by using spray coating method

  • Oh, Seungtae;Seo, Donghyun;Lee, Choongyeop;Nam, Youngsuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.157.2-157.2
    • /
    • 2016
  • Water repellent surfaces may enhance the condensation by efficiently removing the condensed droplets. However, such surfaces may lose their original performance as they are exposed to external mechanical stresses. In this work, we fabricated spray-coated mechanically robust superhydrophobic surfaces using treated titanium dioxide (Type 1) or silica particles (Type 2). Then we compared the mechanical robustness of such surfaces with the silane-coated superhydrophobic surface and PEEK coated surface using a controlled-sand blasting method. The results show that the spray-coated samples can maintain the same level of the contact angle hysteresis than silane-coated superhydorphobic surface after sand blasting at 2 bar. The spray-coating method was applied to the tube type condenser and the condensation behaviors were observed within the environmental chamber with controlled pressure, humidity and non-condensable gas. Previously-reported droplet jumping was observed in the early stage of the condensation event, but soon the droplet jumping stopped and only dropwise condensation was observed since the condensed droplets were pinned on the cracks at spray-coated surfaces. The static contact angle decreases from $158.0^{\circ}$ to $133.2^{\circ}$, and hysteresis increases from $3.0^{\circ}$ to $23.5^{\circ}$ when active condensation occurs on such surfaces. This work suggests the benefits and limitation of spray-coated superhydrophobic condensers and help develop advanced condensers for practical use.

  • PDF

Structural Performance Evaluations of Steel Hysteretic Damper in Series for High-Rise Shear Wall System (고층 전단벽시스템 적용을 위한 직렬 연결형 강재이력댐퍼의 구조성능평가)

  • Oh, Sang-Hoon;Choi, Kwang-Yong;Ryu, Hong-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.371-382
    • /
    • 2012
  • Existing shear wall system may cause ductility fallen to the structure which it is on because relatively weak concrete core would easy to be damaged. In this study, steel hysteresis dampers whose stiffness is higher than existing coupling beam and whose strength is easy to change depending on design load was used in coupling beam. The steel hysteresis damper was proposed for the shape connected in double in series, from this, several static test were conducted to verify structural performance of the damper. FEM analysis was also performed, then design equation were suggested.