• 제목/요약/키워드: Static Efficiency

검색결과 734건 처리시간 0.032초

대어휘 연속음성인식을 위한 서브네트워크 기반의 1-패스 세미다이나믹 네트워크 디코딩 (1-Pass Semi-Dynamic Network Decoding Using a Subnetwork-Based Representation for Large Vocabulary Continuous Speech Recognition)

  • 정민화;안동훈
    • 대한음성학회지:말소리
    • /
    • 제50호
    • /
    • pp.51-69
    • /
    • 2004
  • In this paper, we present a one-pass semi-dynamic network decoding framework that inherits both advantages of fast decoding speed from static network decoders and memory efficiency from dynamic network decoders. Our method is based on the novel language model network representation that is essentially of finite state machine (FSM). The static network derived from the language model network [1][2] is partitioned into smaller subnetworks which are static by nature or self-structured. The whole network is dynamically managed so that those subnetworks required for decoding are cached in memory. The network is near-minimized by applying the tail-sharing algorithm. Our decoder is evaluated on the 25k-word Korean broadcast news transcription task. In case of the search network itself, the network is reduced by 73.4% from the tail-sharing algorithm. Compared with the equivalent static network decoder, the semi-dynamic network decoder has increased at most 6% in decoding time while it can be flexibly adapted to the various memory configurations, giving the minimal usage of 37.6% of the complete network size.

  • PDF

정적 및 동적 응답을 이용한 교량의 손상도 추정 기법 (Damage Identification Technique for Bridges Using Static and Dynamic Response)

  • 박우진
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.119-126
    • /
    • 2005
  • Load bearing structural members in a wide variety of applications accumulate damage over their service life. From a standpoint of both safety and performance, it is desirable to monitor the occurrence, location, and extent of such damage. Structures require complicated element models with a number of degrees of freedom in structural analysis. During experiment much effort and cost is needed for measuring structural parameters. The sparseness and errors of measured data have to be considered during the parameter estimation Of Structures. In this paper we introduces damage identification algorithm by a system identification(S.I) using static and dynamic response. To study the behaviour of the estimators in noisy environment Using Monte Carlo simulation and a data measured perturbation scheme is adopted to investigate the influence of measurement errors on identification results. The assessment result by static and dynamic response were compared, and the efficiency and applicabilities of the proposed algorithm are demonstrated through simulated static and dynamic responses of a truss bridge. The assessment results by each method were compared and we could observe that the 5.1 method is superior to the other conventional methods.

Bent Duct 내부 유동의 손실 측정 (Investigation of Pressure Loss in Bent Duct)

  • 노우진;임주현;송성진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.295-298
    • /
    • 2009
  • Bent duct 는 손실을 가중시키고, 효율을 저하시킨다. 지금까지 bent duct에 대한 많은 연구가 진행되었지만, 입구와 출구가 같은 형상에 대해서 연구가 되어왔다. 이번 연구에서는 입구는 환형이지만, 출구는 원형을 가진 bent duct에 대해서 진행되었다. 입구 속도 54 m/s, 레이놀즈수 238,000에서 수행된 이번 연구에서는 bent duct 바깥에 태핑홀을 배치하여 정압분포를 확인하고, 입구와 출구에서 5공 프로브로 유동을 측정하여 스트림 방향 속도 프로파일과 전압 손실 계수를 얻었다. 본 연구에서는 전압 손실 계수, 0.243를 얻었다.

  • PDF

An Adaptive Power Saving Mechanism in IEEE 802.11 Wireless IP Networks

  • Pack Sangheon;Choi Yanghee
    • Journal of Communications and Networks
    • /
    • 제7권2호
    • /
    • pp.126-134
    • /
    • 2005
  • Reducing energy consumption in mobile hosts (MHs) is one of the most critical issues in wireles/mobile networks. IP paging protocol at network layer and power saving mechanism (PSM) at link layer are two core technologies to reduce the energy consumption of MHs. First, we investigate the energy efficiency of the current IEEE 802.11 power saving mechanism (PSM) when IP paging protocol is deployed over IEEE 802.11 networks. The result reveal that the current IEEE 802.11 PSM with a fixed wakeup interval (i.e., the static PSM) exhibits a degraded performance when it is integrated with IP paging protocol. Therefore, we propose an adaptive power saving mechanism in IEEE 802.11-based wireless IP networks. Unlike the static PSM, the adaptive PSM adjusts the wake-up interval adaptively depending on the session activity at IP layer. Specifically, the MH estimates the idle periods for incoming sessions based on the exponentially weighted moving average (EWMA) scheme and sets its wake-up interval dynamically by considering the estimated idle period and paging delay bound. For performance evaluation, we have conducted comprehensive simulations and compared the total cost and energy consumption, which are incurred in IP paging protocol in conjunction with various power saving mechanisms: The static PSM, the adaptive PSM, and the optimum PSM. Simulation results show that the adaptive PSM provides a closer performance to the optimum PSM than the static PSM.

벨마우스 깊이가 다른 3차원 소형축류홴의 공력특성에 대한 대규모 와 모사 (Large Eddy Simulation on the Aerodynamic Performance of Three-Dimensional Small-Size Axial Fan with the Different Depth of Bellmouth)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제19권6호
    • /
    • pp.19-25
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the aerodynamic performance of three-dimensional small-size axial fan(SSAF) with the different depth of bellmouth. The static pressure coefficients analyzed by LES predict a little bit larger than measurements except stall region regardless of the installation depth between SSAF and bellmouth. Moreover, static pressure efficiencies analyzed by LES show about maximum 30% at the actual operating point ranges, but measurements do not. Therefore, if the blades of conventional SSAF have some more rigidity and complete dynamic balance, the aerodynamic performance of SSAF will be some more improved. In consequence, LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method.

H형 복공판과 Channel형 복공판의 구조거동에 관한 연구 (An Experimental Study on the Structure Behavior of H & Channel-Type Lining Board)

  • 이승수;김두환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.119-126
    • /
    • 2005
  • 본 연구는 H형 및 Channel형 복공판의 정적 하중에 대한 성능을 규명하는데 그 목적이 있다. 보다 향상된 복공판의 성능이 요구되어짐에 따라 보강의 가능성 및 효율성을 파악하였고, 정적재하시험 및 구조해석을 통해 시험체의 개선효과를 비교 검토하였다. 정적재하시험을 통하여 응력과 처짐을 측정하였고, 이를 FEM 해석결과와 비교하였을 때 극한 하중 및 변위, 지간 중앙부와 상 하 플랜지의 휨응력 등에서 H형 복공판은 Channel형 복공판에 비해 약 3배 이상의 높은 강성을 보유하고 있는 것으로 나타났다.

제어알고리즘 개발을 위한 변압기 냉각시스템의 수학적모델 (Mathematical Models of a Transformer Cooling System for the Control Algorithm Development)

  • 한도영;노희전
    • 설비공학논문집
    • /
    • 제22권2호
    • /
    • pp.70-77
    • /
    • 2010
  • In order to improve the efficiency of a main transformer in a train, the optimal operation of a cooling system is necessary. For the development of optimal control algorithms of a cooling system, mathematical models of a main transformer cooling system were developed. These include static and dynamic models of a main transformer, an oil pump, an oil cooler, and a blower. Static models were used to find optimal oil temperatures of the inlet and the outlet of a transformer. Dynamic models were used to predict transient performances of control algorithms of a blower and an oil pump. Simulation results showed good predictions of the static and the dynamic behavior of a main transformer cooling system. Therefore, mathematical models developed in this study may be effectively used for the development of control algorithms of a main transformer cooling system.

OPNET을 이용한 MANET 프로토콜 분석 (Analysis of MANET Protocols Using OPNET)

  • 장효뢰;왕야;기장근;이규대
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.87-97
    • /
    • 2009
  • A Mobile Ad hoc Network (MANET) is characterized by multi-hop wireless connectivity, frequently changing network topology with mobile nodes and the efficiency of the dynamic routing protocol plays an important role in the performance of the network. In this paper, the performance of five routing protocols for MANET is compared by using OPNET modeler: AODV, DSR, GRP, OLSR and TORA. The various performance metrics are examined, such as packet delivery ratio, end-to-end delay and routing overhead with varying data traffic, number of nodes and mobility. In our simulation results, OLSR shows the best performance in terms of data delivery ratio in static networks, while AODV has the best performance in mobile networks with moderate data traffic. When comparing proactive protocols (OLSR, GRP) and reactive protocols (AODV, DSR) with varying data traffic in the static networks, proactive protocols consistently presents almost constant overhead while the reactive protocols show a sharp increase to some extent. When comparing each of proactive protocols in static and mobile networks, OLSR is better than GRP in the delivery ratio while overhead is more. As for reactive protocols, DSR outperforms AODV under the moderate data traffic in static networks because it exploits caching aggressively and maintains multiple routes per destination. However, this advantage turns into disadvantage in high mobility networks since the chance of the cached routes becoming stale increases.

  • PDF

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • 제5권1호
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory

  • Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Alwabli, Afaf S.;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • 제24권4호
    • /
    • pp.369-378
    • /
    • 2019
  • This paper aims to present an analytical model to predict the static analysis of laminated reinforced composite plates subjected to sinusoidal and uniform loads by using a simple first-order shear deformation theory (SFSDT). The most important aspect of the present theory is that unlike the conventional FSDT, the proposed model contains only four unknown variables. This is due to the fact that the inplane displacement field is selected according to an undetermined integral component in order to reduce the number of unknowns. The governing differential equations are derived by employing the static version of principle of virtual work and solved by applying Navier's solution procedure. The non-dimensional displacements and stresses of simply supported antisymmetric cross-ply and angle-ply laminated plates are presented and compared with the exact 3D solutions and those computed using other plate theories to demonstrate the accuracy and efficiency of the present theory. It is found from these comparisons that the numerical results provided by the present model are in close agreement with those obtained by using the conventional FSDT.