Magazine of the Korean Society of Agricultural Engineers
/
v.45
no.3
/
pp.73-83
/
2003
Methods of fuzzy C-means have been used to characterize geotechnical information from static cone penetration data. As contrary with traditional classification methods such as Robertson classification chart, the FCM expresses classes not conclusiveness but fuzzy. The results show that the FCM is useful to characterize ground information that can not be easily found by using normal classification chart. But optimal number of classes may not be easily defined. So, the optimal number of classes should be determined considering not only technical measures but engineering aspects.
Data dependencies are one of major hurdles to limit ILP(Instruction Level Parallelism), so several related works have suggested that the limit imposed by data dependencies can be overcome to some extent with use of the data value prediction. Hybrid value predictor can obtain the high prediction accuracy using advantages of various predictors, but it has a defect that same instruction has overlapping entries in all predictor. In this paper, we propose a new hybrid value predictor which achieves high performance by using the information of static and dynamic classification. The proposed predictor can enhance the prediction accuracy and efficiently decrease the prediction table size of predictor, because it allocates each instruction into single best-suited predictor during the fetch stage by using the information of static classification. Also, it can enhance the prediction accuracy because it selects a best- suited prediction method for the “Unknown”pattern instructions by using the dynamic classification mechanism. Simulation results based on the SimpleScalar/PISA tool set and the SPECint95 benchmarks show the average correct prediction rate of 85.1% by using the static classification mechanism. Also, we achieve the average correction prediction rate of 87.6% by using static and dynamic classification mechanism.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.53
no.5
/
pp.361-367
/
2004
This paper describes design of an algorithm for analyzing human activity using body-fixed 3-axis accelerometer in the small of the back. In the first step, we distinguish static and dynamic activity period using AC signal analysis. Then five postures were classified by applying the threshold in DC signal corresponding to the static activity period. Also, after comparison of average power and taking negative peak signal in the dynamic activity period, the four dynamic activities were classified by adaptive threshold method. To evaluate the performance of the proposed algorithm, the measured signals obtained from six subjects were applied to the proposed algorithm and the results were compared with the simultaneously measured video data. As a result, the activity classification rate of 95.7% on average was obtained. Overall results show that the proposed classification algorithm has a possibility to be used to analyze the static and dynamic physical activity.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.12
/
pp.5116-5134
/
2015
In this paper, due to the network security defense is mainly static defense, a dynamic classification network security defense strategy model is proposed by analyzing the security situation of complex computer network. According to the network security impact parameters, eight security elements and classification standard are obtained. At the same time, the dynamic classification algorithm based on fuzzy theory is also presented. The experimental analysis results show that the proposed model and algorithm are feasible and effective. The model is a good way to solve a safety problem that the static defense cannot cope with tactics and lack of dynamic change.
Journal of the Korea Society of Computer and Information
/
v.22
no.3
/
pp.81-88
/
2017
In this paper, we classified the weaknesses of C/C++ programs listed in CWE based on the diagnostic information produced at each stage of program compilation. Our classification identifies which stages should be responsible for analyzing the weaknesses. We also present algorithmic frameworks for detecting typical weaknesses belonging to the classes to demonstrate validness of our scheme. For the weaknesses that cannot be analyzed by using the diagnostic information, we separated them as a group that are often detectable by the analyses that simulate program execution, for instance, symbolic execution and abstract interpretation. We expect that classification of weaknesses, and diagnostic information accordingly, would contribute to systematic development of static analyzers that minimizes false positives and negatives.
Journal of the Korea Institute of Military Science and Technology
/
v.21
no.2
/
pp.158-165
/
2018
Recently there is a great interest in the bi-static sonar. However, since the transmitter and the receiver operate on different platforms, it may be necessary to operate the system in a non-cooperative mode. In this situation, the detection and localization performance are limited. Therefore, it is necessary to classify the received pulse from the transmitter to overcome the performance limitation. In this paper, we proposed a robust automatic pulse classification method that can be applied to real systems. The proposed method eliminates the effects of noise and multipath propagation through post-processing and improves the pulse classification performance. We also verified the proposed method through the sea experimental data.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.15
no.3
/
pp.145-152
/
2015
We consider an online selective-sample learning problem for sequence classification, where the goal is to learn a predictive model using a stream of data samples whose class labels can be selectively queried by the algorithm. Given that there is a limit to the total number of queries permitted, the key issue is choosing the most informative and salient samples for their class labels to be queried. Recently, several aggressive selective-sample algorithms have been proposed under a linear model for static (non-sequential) binary classification. We extend the idea to hidden Markov models for multi-class sequence classification by introducing reasonable measures for the novelty and prediction confidence of the incoming sample with respect to the current model, on which the query decision is based. For several sequence classification datasets/tasks in online learning setups, we demonstrate the effectiveness of the proposed approach.
Journal of The Korean Association For Science Education
/
v.32
no.6
/
pp.1063-1071
/
2012
The purpose of this study is to investigate the relation between the classification ability quotient and cortisol-hormonal change of middle school students. Thirty-three students, second graders in middle school, performed the classification task that can be an indicator of students' classification ability. And then amount of the secreted hormone was analyzed during task performance. The study results were as follows: First, the classification methods of students mostly utilized visual, qualitative. Their classification patterns for each subject were static, partial, and non-comparative. Second, the amount of stress-hormone was secreted from students during the experiment decreased in overall after the free classification. It seemed that student-centered activity relieved stress. Third, the classification ability quotient turned out to be significantly correlated to the stress hormone, which means that there was a close relationship between classification ability and stress level. It was also considered that stress had a positive effect on the improvement of classification ability. This study provided physiologically more accurate information on the stress increased in the learning process than other conventional studies based on reports or interviews. Finally, researchers could recognize the effect of stress in the cognitive activity and the need to find an appropriate level of stress in learning processes.
In this article we make a local classification of n-dimensional Riemannian manifolds (M, g) with harmonic curvature and less than four Ricci eigenvalues which admit a smooth non constant solution f to the following equation $$(1)\hspace{20}{\nabla}df=f(r-{\frac{R}{n-1}}g)+x{\cdot} r+y(R)g,$$ where ∇ is the Levi-Civita connection of g, r is the Ricci tensor of g, x is a constant and y(R) a function of the scalar curvature R. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, either (i) or (ii) below holds; (i) (V, g, f + x) is a static space and isometric to a domain in the Riemannian product of an Einstein manifold N and a static space (W, gW, f + x), where gW is a warped product metric of an interval and an Einstein manifold. (ii) (V, g) is isometric to a domain in the warped product of an interval and an Einstein manifold. For the proof we use eigenvalue analysis based on the Codazzi tensor properties of the Ricci tensor.
We propose a new hybrid value predictor which achieves high performance by combining several predictors. Because the proposed hybrid value predictor can update the prediction table speculatively, it efficiently reduces the number of mispredicted instructions due to stale data. Also, the proposed predictor can enhance the prediction accuracy and efficiently decrease the hardware cost of predictor, because it allocates instructions into the best-suited predictor during instruction fetch stage by using the information of static classification which is obtained from the profile-based compiler implementation. For the 16-issue superscalar processors, simulation results based on the SimpleScalar/PISA tool set show that we achieve the average prediction rates of 73% by using speculative update and the average prediction rates of 88% by adding static classification for the SPECint95 benchmark programs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.