• Title/Summary/Keyword: Static Analyzer

Search Result 78, Processing Time 0.023 seconds

PHOTOELASTIC STRESS ANALYSIS OF IMPLANT SUPPORTED FIXED PROSTHESES WITH DIFFERENT PLACEMENT CONFIGURATIONS IN MANDIBULAR POSTERIOR REGION (하악 구치부에서 임플랜트 배열방식에 따른 임플랜트지지 고정성 국소의치의 광탄성 응력 분석)

  • Cho Hye-Won;Kim Nan-Young;Kim Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.1
    • /
    • pp.120-131
    • /
    • 2005
  • Statement of problem. More than 70% of patients who need the implant supported restoration are parially edentulous. The principles of design for implant supported fixed partial denture in mandibular posterior region are many and varied. Jurisdiction for their use is usually based on clinical evaluation. There are several areas or interest regarding the design of implant supported fixed partial denture in mandibular posterior region. 1) Straight and tripod configuration in implant placement, 2) Two restoration types such as individualized and splinted restorations. Purpose. The purpose of this study was to compare the amount and distribution of stress around the implant fixtures placed in the mandibular posterior region with two different arrangements and to evaluate the effects of splinting using the photoelastic stress analysis. Material & methods. 1) Production of study model: Mandibular partially edentulous model was waxed-up and duplicated with silicone and two models were poured in stone. 2) Fixture installation and photoelastic model construction: Using surveyor(Ney, USh), 3 fixtures(two 4.0 $\times$13 mm, one 5.0$\times$10 mm, Lifecore, USA) were insta)led in straight & tripod configurations. Silicone molds were made and poured in photoelastic resin (PL-2. Measurements group, USA). 3) Prostheses construction: Four 3-unit bridges (Type III gold alloy, Dongmyung co., Korea) were produced with nonhexed and hexed UCLA abutments and fitted with conventional methods. The abutments were tightened with 30 Ncm torque and the static loads were applied at 12 points of the occlusal surface. 4) Photoelastic stress analysis : The polarizer analyzer system with digital camera(S-2 Pro, Fujifilm, Japan) was used to take the photoelastic fringes and analysed using computer analysis program. Results. Solitary hexed UCLA restoration developed different stress patterns between two implant arrangement configurations, but there were no stress transfer to adjacent implants from the loaded implant in both configurations. However splinted restorations showed lesser amount of stresses in the loaded implants and showed stress transfer to adjacent implants in both configurations. Solitary hexed UCLA restoration with tripod configuration developed higher stresses in anterior and middle implants under loading than implants with straight configurations. Splintied 3 unit fixed partial dentures with tripod configuration showed higher stress development in posterior implant under loading but there were no obvious differences between two configurations. Conclusions. The tripod configuration of implant arrangement didn't show any advantages over the straight configuration. Splinting of 3 unit bridges with nonhexed UCLA abutments showed less stress development around the fixtures. Solitary hexed UCLA restoration developed tilting of implant fixture under offset loads.

Photoemission Electron Micro-spectroscopic Study of the Conductive Layer of a CVD Diamond (001)$2{\times}1$ Surface

  • Kono, S.;Saitou, T.;Kawata, H.;Goto, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.7-8
    • /
    • 2010
  • The surface conductive layer (SCL) of chemical vapor deposition (CVD) diamonds has attracting much interest. However, neither photoemission electron microscopic (PEEM) nor micro-spectroscopic (PEEMS) information is available so far. Since SCL retains in an ultra-high vacuum (UHV) condition, PEEM or PEEMS study will give an insight of SCL, which is the subject of the present study. The sample was made on a Ib-type HTHP diamond (001) substrate by non-doping CVD growthin a DC-plasma deposition chamber. The SCL properties of the sample in air were; a few tens K/Sq. in sheet resistance, ${\sim}180\;cm^2/vs$ in Hall mobility, ${\sim}2{\times}10^{12}/cm^2$ in carrier concentration. The root-square-mean surface roughness (Rq) of the sample was ~0.2nm as checked by AFM. A $2{\times}1$ LEED pattern and a sheet resistance of several hundreds K/Sq. in UHV were checked in a UHV chamber with an in-situ resist-meter [1]. The sample was then installed in a commercial PEEM/S apparatus (Omicron FOCUS IS-PEEM) which was composed of electro-static-lens optics together with an electron energy-analyzer. The presence of SCL was regularly monitored by measuring resistance between two electrodes (colloidal graphite) pasted on the two ends of sample surface. Figure 1 shows two PEEM images of a same area of the sample; a) is excited with a Hg-lamp and b) with a Xe-lamp. The maximum photon energy of the Hg-lamp is ~4.9 eV which is smaller that the band gap energy ($E_G=5.5\;eV$) of diamond and the maximum photon energy of the Xe-lamp is ~6.2 eV which is larger than $E_G$. The image that appear with the Hg-lamp can be due to photo-excitation to unoccupied states of the hydrogen-terminated negative electron affinity (NEA) diamond surface [2]. Secondary electron energy distribution of the white background of Figs.1a) and b) indeed shows that the whole surface is NEA except a large black dot on the upper center. However, Figs.1a) and 1b) show several features that are qualitatively different from each other. Some of the differences are the followings: the two main dark lines A and B in Fig.1b) are not at all obvious and the white lines B and C in Fig.1b) appear to be dark lines in Fig.1a). A PEEMS analysis of secondary electron energy distribution showed that all of the features A-D have negative electron affinity with marginal differences among them. These differences can be attributed to differences in the details of energy band bending underneath the surface present in SCL [3].

  • PDF

Comparative Study between Design Methods and Pile Load Tests for Bearing Capacity of Driven PHC Piles in the Nakdong River Delta (낙동강 삼각주에 항타된 PHC말뚝의 지지력을 위한 재하시험과 지지력 공식의 비교연구)

  • Dung, N.T.;Chung, S.G.;Kim, S.R.;Chung, J.G.
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.61-75
    • /
    • 2007
  • Deep foundations have been popularly installed in hard stratum such as gravels or rocks in Korea. However, it is necessary to consider sand or sandy gravel layers that locate at the mid-depths as the bearing stratum of piles in the thick Nakdong River deltaic deposits, as done in the Chaophraya (Bangkok) and Mississippi River deltas. This study was focused on the finding of suitable methods for estimating bearing capacity when driving prestressed high-strength concrete (PHC) piles to a required depth in the deltaic area. Ground investigation was performed at five locations of two sites in the deltaic area. Bearing capacity of the driven piles has been computed using a number of proposed methods such as CPT-based and other analytical methods, based on the ground investigation and comparison one another other. Five PDA (pile driving analyzer) tests were systematically carried out at the whole depths of embedded piles, which is a well-blown useful technique for the purposes. As the results, the bearing capacities calculated by various methods were compared with the PDA and static load testing results. It was found that the shaft resistance is significantly governed by set-up effects and then the long-term value agrees well with that of the $\beta$ method. Also, the design methods for toe resistance were determined based on the SLT result, rather than PDA results that led to underestimation. Moreover, using the CPT results, appropriate methods were proposed for calculating the bearing capacity of the piles in the area.

Effect of crude fibre additives ARBOCEL and VITACEL on the physicochemical properties of granulated feed mixtures for broiler chickens

  • Jakub Urban;Monika Michalczuk;Martyna Batorska;Agata Marzec;Adriana Jaroszek;Damian Bien
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.274-283
    • /
    • 2024
  • Objective: The aim of the study was to evaluate the physicochemical properties (nutrient composition, pH, water content and activity, sorption properties) and mechanical properties (compression force and energy) of granulated feed mixtures with various inclusion levels of crude fibre concentrates ARBOCEL and VITACEL for broiler chickens, i.e. +0.0% (control group - group C), +0.3%, +0.8%, +1.0%, +1.2%. Methods: The feed mixtures were analyzed for their physicochemical properties (nutrient composition by near-infrared spectroscopy, pH with the use a CP-401 pH meter with an IJ-44C glass electrode, water content was determined with the drying method and activity was determined with the Aqua Lab Series 3, sorption properties was determined with the static method) and mechanical properties (compression force and energy with the use TA-HD plus texture analyzer). The Guggenheim-Anderson-de Boer (GAB) model applied in the study correctly described the sorption properties of the analyzed feed mixtures in terms of water activity. Results: The fibre concentrate type affected the specific surface area of the adsorbent and equilibrium water content in the GAB monolayer (p≤0.05) (significantly statistical). The type and dose of the fibre concentrate influenced the dimensionless C and k parameters of the GAB model related to the properties of the monolayer and multilayers, respectively (p≤0.05). They also affected the pH value of the analyzed feed mixtures (p≤0.05). In addition, crude fibre type influenced water activity (p≤0.05) as well as compression energy (J) and compression force (N) (p≤0.001) (highly significantly statistical) of the feed mixtures. Conclusion: The physicochemical analyses of feed mixtures with various inclusion levels (0.3%, 0.8%, 1.0%, 1.2%) of crude fiber concentrates ARBOCEL or VITACEL demonstrated that both crude fiber types may be used in the feed industry as a feedstuff material to produce starter type mixtures for broiler chickens.

Evaluation on the Usefulness of Alternative Radiopharmaceutical by Particle size in Sentinel Lymphoscintigraphy (감시림프절 검사 시 입자크기에 따른 대체 방사성의약품의 유용성평가)

  • Jo, Gwang Mo;Jeong, Yeong Hwan;Choi, Do Cheol;Shin, Ju Cheol
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.36-41
    • /
    • 2016
  • Purpose Sentinel lymphoscintigraphy (SLS) was using only $^{99m}Tc-phytate$. If the supply is interrupted temporarily, there is no alternative radiopharmaceuticals. The aim of this study measure the particle size of radiopharmaceuticals and look for radiopharmaceuticals which can be substituted for $^{99m}Tc-phytate$. Materials and Methods The particle size of radiopharmaceuticals were analyzed by a nano-particle analyzer. This study were selected known radiopharmaceuticals to be useful particle size for SLS. We were divided into control and experimental groups using $^{99m}Tc-DPD$, $^{99m}Tc-MAG3$, $^{99m}Tc-DMSA$ with $^{99m}Tc-phytate$. For in-vivo experiment, radiopharmaceuticals were injected intradermally at both foot to perform lymphoscintigraphy. Imaging was acquired to dynamic and delayed static image and observe the inguinal lymph nodes with the naked eye. Results Particle size was measured respectively Phytate 105~255 nm (81.9%), MAG3 91~255 nm (98.7%), DPD 105~342 nm (77.3%), DMSA 164~ 342 nm (99.2%), MAA 1281~2305 nm (90.6%), DTPA 342~1106 nm (79.4%), and HDP 295~955 nm (94%). In-vivo delayed static image, inguinal lymph nodes of all experiment groups and two control groups are visible to naked eye. however, $^{99m}Tc-MAG3$ of control groups is not visible to naked eye. Conclusion We were analyzed to the particle size of the radiopharmaceuticals that are used in in-vivo. Consequently, $^{99m}Tc-DPD$, $^{99m}Tc-DMSA $are possible in an alternative radiopharmaceuticals of emergency.

  • PDF

Timing Driven Analytic Placement for FPGAs (타이밍 구동 FPGA 분석적 배치)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.21-28
    • /
    • 2017
  • Practical models for FPGA architectures which include performance- and/or density-enhancing components such as carry chains, wide function multiplexers, and memory/multiplier blocks are being applied to academic FPGA placement tools which used to rely on simple imaginary models. Previously the techniques such as pre-packing and multi-layer density analysis are proposed to remedy issues related to such practical models, and the wire length is effectively minimized during initial analytic placement. Since timing should be optimized rather than wire length, most previous work takes into account the timing constraints. However, instead of the initial analytic placement, the timing-driven techniques are mostly applied to subsequent steps such as placement legalization and iterative improvement. This paper incorporates the timing driven techniques, which check if the placement meets the timing constraints given in the standard SDC format, and minimize the detected violations, with the existing analytic placer which implements pre-packing and multi-layer density analysis. First of all, a static timing analyzer has been used to check the timing of the wire-length minimized placement results. In order to minimize the detected violations, a function to minimize the largest arrival time at end points is added to the objective function of the analytic placer. Since each clock has a different period, the function is proposed to be evaluated for each clock, and added to the objective function. Since this function can unnecessarily reduce the unviolated paths, a new function which calculates and minimizes the largest negative slack at end points is also proposed, and compared. Since the existing legalization which is non-timing driven is used before the timing analysis, any improvement on timing is entirely due to the functions added to the objective function. The experiments on twelve industrial examples show that the minimum arrival time function improves the worst negative slack by 15% on average whereas the minimum worst negative slack function improves the negative slacks by additional 6% on average.

FRACTURE RESISTANCE OF THE THREE TYPES OF UNDERMINED CAVITY FILLED WITH COMPOSITE RESIN (복합 레진으로 수복된 세 가지 첨와형태 와동의 파절 저항성에 관한 연구)

  • Choi, Hoon-Soo;Shin, Dong-Hoon
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.177-183
    • /
    • 2008
  • It was reported that esthetic composite resin restoration reinforces the strength of remaining tooth structure with preserving the natural tooth structure. However, it is unknown how much the strength would be recovered. The purpose of this study was to compare the fracture resistance of three types of undermined cavity filled with composite resin with that of non-cavitated natural tooth. Forty sound upper molars were allocated randomly into four groups of 10 teeth. After flattening occlusal enamel. undermined cavities were prepared in thirty teeth to make three types of specimens with various thickness of occlusal structure (Group $1{\sim}3$). All the cavity have the 5 mm width mesio-distally and 7 mm depth bucco-lingually. Another natural 10 teeth (Group 4) were used as a control group. Teeth in group 1 have remaining occlusal structure about 1 mm thickness, which was composed of mainly enamel and small amount of dentin. In Group 2, remained thickness was about 1.5 mm, including 0.5 mm thickness dentin. In Group 3, thickness was about 2.0 mm, including 1 mm thickness dentin. Every effort was made to keep the remaining dentin thickness about 0.5 mm from the pulp space in cavitated groups. All the thickness was evaluated with radiographic Length Analyzer program. After acid etching with 37% phosphoric acid, one-bottle adhesive (Single $Bond^{TM}$, 3M/ESPE, USA) was applied following the manufacturer's recommendation and cavities were incrementally filled with hybrid composite resin (Filtek $Z-250^{TM}$, 3M/ESPE, USA). Teeth were stored in distilled water for one day at room temperature, after then, they were finished and polished with Sof-Lex system. All specimens were embedded in acrylic resin and static load was applied to the specimens with a 3 mm diameter stainless steel rod in an Universal testing machine and cross-head speed was 1 mm/min. Maximum load in case of fracture was recorded for each specimen. The data were statistically analyzed using one-way analysis of variance (ANOVA) and a Tukey test at the 95% confidence level. The results were as follows: 1. Fracture resistance of the undermined cavity filled with composite resin was about 75% of the natural tooth. 2. No significant difference on fracture loads of composite resin restoration was found among the three types of cavitated groups. Within the limits of this study, it can be concluded the fracture resistance of the undermined cavity filled with composite resin was lower than that of natural teeth, however remaining tooth structure may be supported and saved by the reinforcement with adhesive restoration, even of that portion consists of mainly enamel and a little dentin structure.

  • PDF

FRACTURE RESISTANCE OF THE THREE TYPES OF UNDERMINED CAVITY FILLED WITH COMPOSITE RESIN (복합 레진으로 수복된 세 가지 첨와형태 와동의 파절 저항성에 관한 연구)

  • Choi, Hoon-Soo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • It was reported that esthetic composite resin restoration reinforces the strength of remaining tooth structure with preserving the natural tooth structure. However, it is unknown how much the strength would be recovered. The purpose of this study was to compare the fracture resistance of three types of undermined cavity filled with composite resin with that of non-cavitated natural tooth. Forty sound upper molars were allocated randomly into four groups of 10 teeth. After flattening occlusal enamel, undermined cavities were prepared in thirty teeth to make three types of specimens with various thickness of occlusal structure (Group $1{\sim}3$). All the cavity have the 5 mm width mesiodistally and 7 mm depth bucco-lingually. Another natural 10 teeth (Group 4) were used as a control group. Teeth in group 1 have remaining occlusal structure about 1 mm thickness, which was composed of mainly enamel and small amount of dentin. In Group 2, remained thickness was about 1.5 mm, including 0.5 mm thickness dentin. In Group 3, thickness was about 2.0 mm, including 1 mm thickness dentin. Every effort was made to keep the remaining dentin thickness about 0.5 mm from the pulp space in cavitated groups. All the thickness was evaluated with radiographic Length Analyzer program. After acid etching with 37% phosphoric acid, one-bottle adhesive (Single $Bond^{TM}$, 3M/ESPE, USA) was applied following the manufacturer's recommendation and cavities were incrementally filled with hybrid composite resin (Filtek $Z-250^{TM}$, 3M/ESPE, USA). Teeth were stored in distilled water for one day at room temperature, after then, they were finished and polished with Sof-Lex system. All specimens were embedded in acrylic resin and static load was applied to the specimens with a 3 mm diameter stainless steel rod in an Universal testing machine and cross-head speed was 1 mm/min. Maximum load in case of fracture was recorded for each specimen. The data were statistically analyzed using one-way analysis of variance (ANOVA) and a Tukey test at the 95% confidence level. The results were as follows: 1. Fracture resistance of the undermined cavity filled with composite resin was about 75% of the natural tooth. 2. No significant difference in fracture loads of composite resin restoration was found among the three types of cavitated groups. Within the limits of this study, it can be concluded the fracture resistance of the undermined cavity filled with composite resin was lower than that of natural teeth, however remaining tooth structure may be supported and saved by the reinforcement with adhesive restoration, even if that portion consists of mainly enamel and a little dentin structure.