Evaluation on the Usefulness of Alternative Radiopharmaceutical by Particle size in Sentinel Lymphoscintigraphy

감시림프절 검사 시 입자크기에 따른 대체 방사성의약품의 유용성평가

  • Jo, Gwang Mo (Department of Nuclear Medicine, Chonbuk National University Hospital) ;
  • Jeong, Yeong Hwan (Department of Nuclear Medicine, Chonbuk National University Hospital) ;
  • Choi, Do Cheol (Department of Nuclear Medicine, Chonbuk National University Hospital) ;
  • Shin, Ju Cheol (Department of Nuclear Medicine, Chonbuk National University Hospital)
  • 조광모 (전북대학교병원 핵의학과) ;
  • 정영환 (전북대학교병원 핵의학과) ;
  • 최도철 (전북대학교병원 핵의학과) ;
  • 신주철 (전북대학교병원 핵의학과)
  • Received : 2016.09.28
  • Accepted : 2016.10.05
  • Published : 2016.10.29

Abstract

Purpose Sentinel lymphoscintigraphy (SLS) was using only $^{99m}Tc-phytate$. If the supply is interrupted temporarily, there is no alternative radiopharmaceuticals. The aim of this study measure the particle size of radiopharmaceuticals and look for radiopharmaceuticals which can be substituted for $^{99m}Tc-phytate$. Materials and Methods The particle size of radiopharmaceuticals were analyzed by a nano-particle analyzer. This study were selected known radiopharmaceuticals to be useful particle size for SLS. We were divided into control and experimental groups using $^{99m}Tc-DPD$, $^{99m}Tc-MAG3$, $^{99m}Tc-DMSA$ with $^{99m}Tc-phytate$. For in-vivo experiment, radiopharmaceuticals were injected intradermally at both foot to perform lymphoscintigraphy. Imaging was acquired to dynamic and delayed static image and observe the inguinal lymph nodes with the naked eye. Results Particle size was measured respectively Phytate 105~255 nm (81.9%), MAG3 91~255 nm (98.7%), DPD 105~342 nm (77.3%), DMSA 164~ 342 nm (99.2%), MAA 1281~2305 nm (90.6%), DTPA 342~1106 nm (79.4%), and HDP 295~955 nm (94%). In-vivo delayed static image, inguinal lymph nodes of all experiment groups and two control groups are visible to naked eye. however, $^{99m}Tc-MAG3$ of control groups is not visible to naked eye. Conclusion We were analyzed to the particle size of the radiopharmaceuticals that are used in in-vivo. Consequently, $^{99m}Tc-DPD$, $^{99m}Tc-DMSA $are possible in an alternative radiopharmaceuticals of emergency.

1. 목적 현재 감시림프절 검사에는 $^{99m}Tc-Phytate$만 사용한다. 만약 일시적으로 공급이 중단된다면 대체 가능한 방사성의약품이 없는 실정이다. 본 연구에서는 감시림프절 검사의 성공요소 중 방사성의약품의 입자 크기에 중점을 두어 핵의학 검사에 사용되는 방사성의약품들의 입자크기를 측정해보고 감시림프절 검사 시 $^{99m}Tc-Phytate$를 대체할 수 있는 방사성의약품을 찾아보고자 하였다. 2. 방법 Zetasizer Nano ZS90 (Malvern, UK)를 통하여 체내검사에 이용되는 Phytate, MAG3, DPD, DMSA, MAA, DTPA, HDP의 입자크기를 분석하였다. 동물실험은 9주령의 백서 6마리를 사용하여 각각 3마리씩 $^{99m}Tc-Phytate$를 사용한 대조군과 감시림프절 검사 시 유용하다고 알려진 입자크기를 갖는 $^{99m}Tc-MAG3$, $^{99m}Tc-DPD$$^{99m}Tc-DMSA$를 사용한 실험군을 설정 하였다. 백서의 발등에 11.1 MBq ($300{\mu}Ci$)을 인슐린 주사기를 이용하여 피하주사 하고, 동적영상과 정적지연영상을 획득한 후 육안으로 서혜부 림프절을 관찰하였다. 3. 결과 나노입자 분석기를 통하여 측정한 입자크기는 각각 Phytate 105~255 nm ($81.9{\pm}23%$), MAG3 91~255 nm ($98.7{\pm}17%$), DPD 105~342 nm ($77.3{\pm}11%$), DMSA 164~342 nm ($99.2{\pm}35%$), MAA 1281~2305 nm($90.6{\pm}82%$), DTPA 342~1106 nm ($79.4{\pm}28%$), HDP 295~955 nm ($94{\pm}33%$)로 나타났다. $^{99m}Tc-Phytate$를 사용한 대조군은 모든 실험에서 서혜부 림프절을 육안으로 확인 할 수 있었다. $^{99m}Tc-Phytate$와 가장 유사한 크기의 $^{99m}Tc-MAG3$는 서혜부 림프절에 저류하지 않고 빠르게 통과하였고, $^{99m}Tc-DPD$$^{99m}Tc-DMSA$를 이용한 실험에서는 서혜부 림프절에 대조군과 비슷하게 저류되어 림프절 관찰이 용이하였다. 결론: 본 실험을 통해서 핵의학 체내검사에 사용되는 방사성의약품들의 입자크기 분포를 확인하였다. $^{99m}Tc-MAG3$$^{99m}Tc-Phytate$와 가장 유사한 입자크기를 가지고 있으나 동물실험에서는 서혜부 림프절이 관찰되지 않고 빠르게 신장을 통해 배출되었다. 반면에 $^{99m}Tc-DPD$$^{99m}Tc-DMSA$의 경우 유사시 대체 방사성의 약품으로 사용 될 수 있을 것으로 생각된다.

Keywords

References

  1. Albertini JJ, Lyman GH, Cox C, Yeatman T, Balducci L, Ku N, et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 1996;276:1818-22. https://doi.org/10.1001/jama.1996.03540220042028
  2. Krag D, Weaver D, Ashikaga T, Moffat F, Llimberg VS, Shiever C, et al. The sentinel node in breast cancer a multicenter validation study. N Engl J Med 1998;339:941-6. https://doi.org/10.1056/NEJM199810013391401
  3. Watanabe T, Kimijima I, Ohtake T, Tsuchiya A, Shishido F, Takenoshita S. Sentinel node biopsy with technetium-99m colloidal rhenium sulphide in patients with breast cancer. Br J Surg 2001;88:704-7. https://doi.org/10.1046/j.1365-2168.2001.01767.x
  4. Veronesi U, Paganelli G, Viale G, Luini A, Zurride S, Galimberti V, et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med 2003;349:546-53. https://doi.org/10.1056/NEJMoa012782
  5. Cabanas RM. An approach for the treatement of penile carcinoma. Cancer 1977;39:456-466. https://doi.org/10.1002/1097-0142(197702)39:2<456::AID-CNCR2820390214>3.0.CO;2-I
  6. Morton DL, Thompson JF, Essner R, Elashoff R, Stern SL, Nieweg OE, et al. Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: a multicenter trial. Multicenter Selective Lymphadenectomy Trial Group. Ann Surg 1999;230:453-63. https://doi.org/10.1097/00000658-199910000-00001
  7. Giuliano AE, Kirgan DM, Guenther JM, Morton DL, Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann surg 1994;220:391-401. https://doi.org/10.1097/00000658-199409000-00015
  8. Alazraki NP, Eshima D, Eshima LA, Herda SC, Murray DR, Vansant JP, et al. Lymphoscintigraphy, the sentinel node concept and the intraoperative gamma probe in melanoma, breast cancer and other potential cancers. Semin Nucl Med 1997;27:55-67. https://doi.org/10.1016/S0001-2998(97)80036-0
  9. Wilhelm AJ, Mijnhout GS, Franssen EJ. Radio pharmaceuticals in sentinel lymph-node detection-an overview. Eur J Nucl Med 1999;26:36-42. https://doi.org/10.1007/PL00014793
  10. Jang SJ, Moon SH, Kim SK, Kim BS, Kim SW, Chung KW et al. Comparison of the results for sentinel lymph node mapping in the breast cancer patients using $^{99m}Tc$-Antimony trisulfide colloid, $^{99m}Tc$-tin colloid, and $^{99m}Tc$-human serum albumin. Nucl Med Mol Imaging 2007;41:546-552.
  11. Bennett LR, Lago G, Cutaneous lymphoscintigraphy in malignant melanoma. Semin Nucl Med 1983;13:61-9. https://doi.org/10.1016/S0001-2998(83)80037-3
  12. Sadek S, Owunwanne A. Abdel Dayem HM, Yacoub T. Preparation and evaluation of Tc-99m hydorxyethyl starch as a potential radiopharmaceutical for lymphoscintigraphy: comparison with Tc-99m human serum albumin, Tc-99m dextran, and Tc-99m sulfur microcolloid. Lymphology 1989;22:157-66.
  13. Kataoka M, Kawamura M, Hamada K, Itoh H, Nishiyama T, Hamamoto K. Quantitative lymphoscintigraphy using 99m-Tc human serum albumin in patients with previously treated uterine cancer. Br J Radiol 1991;64:1119-21. https://doi.org/10.1259/0007-1285-64-768-1119
  14. Strand SE, Persson BR. Quantitative lymphoscintigraphy I: Basic concepts for optimal uptake of radiocolloids in the parasternal lymph nodes of rabbits. J Nucl Med 1997;20:1038-46.
  15. Alazraki NP, Eshima D, Eshima LA, Herda SC, Murray DR, Vansant JP, et al. Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer, and other potential cancers. Semin Nucl Med 1997;27:55-67. https://doi.org/10.1016/S0001-2998(97)80036-0
  16. Pijper R, Meijer S, Hoekstra OS, Collet GJ, Comans EFL, Boom RPA, et al. Impact of lymphoscintigraphy on sentinel node identification with technetium-99mcolloidal albumin in breast cancer. J Nucl Med 1997; 38:366-8.
  17. Tavares MGM, Sapienza MT, Galeb Jr NA, Belfort FA, Costa RR, Osorio CABT, et al. The use of Tc-99m phytate for sentinel node mapping in melanoma, breast cancer, and vulvar cancer: a study of 100 cases. Eur J Nucl Med 2001;28:1597-1604. https://doi.org/10.1007/s002590100625
  18. Subramanian G, McAfee JG, Mehta A, Blair RJ, Thomas ED. Tc-99m stannous phytate: a new in vivo colloid for imaging the reticuloendothelial system. J Nucl Med 1973;14:459.
  19. Alavi A, Staum MM, Shesol BF, Bloch PH. Technetium-99m Stannous phytate as an imaging agent for lymph node. J Nucl Med 1978;19:422-6.
  20. Hiroshi H, Shoji N, Yoshikazu U, Katsuhiko E, Takaaki A, Yoshiaki N, Masayuki N, Takashi A. Particle size of tin and phytate colloid in sentinel node identification. Journal of surgical Research 2004;121:1-4. https://doi.org/10.1016/j.jss.2004.02.011