• 제목/요약/키워드: State-of-charge

검색결과 1,194건 처리시간 0.026초

제주 서부 해안지역 스코리아의 철 화합물에 관한 연구 (A Study on Iron Compounds of Scoria in The Western Seaside Area of Jeju)

  • 최원준;고정대
    • 한국자기학회지
    • /
    • 제19권6호
    • /
    • pp.227-232
    • /
    • 2009
  • 제주도 서부 해안 일원에 형성된 오름에서 채취한 스코리아의 화학적 조성 및 산화철의 원자가상태와 자기적 성질을 조사하였다. X-선 형광분석으로부터 철 화합물의 총량은 11.00$\sim$13.87 wt%이었고, X-선 회절법을 이용하여 $SiO_2$와 같은 규산염 외에 소량의 철 산화물을 확인할 수 있었다. Mossbauer분광법을 통해 광물 내의 철 성분들이 어떤 형태를 이루는지 확인하였다. 측정한 시료들로부터 olivine인 규산염과 pyroxene, ilmenite와 같은 상자성 철산화물 및 상온에서 반강자성 및 강자성 물질인 hematite와 magnetite 산화철 광물을 확인하였다. 철 화합물의 원자가상태는 일부 $Fe^{2+}$인 olivine, pyroxene 그리고 ilmenite와 $Fe^{3+}$인 hematite, magnetite, clay mineral 등을 포함하고 있다. 분석 결과 제주 서부 해안의 시료 중 수중형성으로 추정되는 스코리아 성분에 대한 철 화합물의 주 원자가 상태는 $Fe^{2+}$로 분석되었고, 나머지 육상형성으로 추정되는 스코리아 성분 내에서 철의 주 원 자가 상태는 $Fe^{3+}$로 분석되었다.

전기방사 나노섬유 에어필터의 정전기적 특성 및 에어로졸 여과특성 (Aerosol filtration and electrostatic properties of electrospun nanofiber air filters)

  • 박현설;임경수
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.71-81
    • /
    • 2009
  • In this study, Nylon 6,6 electrospun (ES) nanofiber filter media were prepared at various spinning conditions. The ES filters tested had no intrinsic electrical charges. The ES filters were triboelectrically charged in the course of filter sample handling, and the charge was drastically decayed in a few hours. On the other hand, the corona charged melt blown filter media showed a permanent electrical charge. The electrical charge state of the ES filters was also examined by comparing collection efficiencies of ES filters for uncharged and charged aerosol particles.

  • PDF

충전용량점증분석법(GISOC)에 의한 리튬이차전지 Half Cell 및 Full Cell의 초기 충방전 특성 분석 (Analyses on the Initial Charge-Discharge Characteristics of Half and Full Cells for the Lithium Secondary Battery using by the Gradual Increasing of State of Charge(GISOC))

  • 도칠훈;진봉수;문성인;윤문수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권2호
    • /
    • pp.53-61
    • /
    • 2004
  • Characteristics of half cells of graphite/lithium and LiCoO$_2$/lithium, and full cells of graphite/LiCoO$_2$/ were analyzed by the use of GISOC(the gradual increasing of the state of charge). GISOC analyses generated IIE(the initial intercalation efficiency), which represents lithium intercalation property of the electrode material, and IIC$_{s}$(the initial irreversible capacity by the surface), which represents irreversible reaction between the electrode surface and electrolyte. Linear-fit range of graphite and LiCo/O$_2$electrodes were respectively 370 and 150 mAh/g based on material weight. IIE of graphite and LiCo/O$_2$electrodes were respectively 93∼94 % and 94∼95 %, and IICs of graphite and LiCo/O$_2$electrodes were 15∼17 mAH/g and 0.3∼1.7 mAh/g, respectively. IIE of graphite/LiCo/O$_2$full cell for GX25 and DJG311 as graphite showed 89∼90 %, which IIE value was lower than IIE of half cell of the cathode and the anode. Parameters of IIE and IIC$_{s}$ can also be used to represent not only half cell but also full cell. The characteristics of the full cell can be simulated through the correlative interpretation of potential profile, IIE, and IIC$_{s}$ of half cells.cells.

겔식 납축 전지의 충전상태에 따른 임피던스 특성 연구 (Impedance Characteristics of the Gel Type VRLA Battery at the Various State-of-Charge)

  • 안상용;정의덕;원미숙;심윤보
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.33-36
    • /
    • 2008
  • 본 연구에서는 겔식 VRLA (valve regulated lead acid번지의 충전상태(SoC) 판단을 위해 임피던스 기법을 이용하여 조사하였다. 임피던스는 VRLA전지 (2V/1.2Ah)의 다양한 충전상태에서 진폭 10mV로 100kHz에서${\sim}$10mHz까지 측정하였다. 측정된 임피던스 데이터로부터 등가회로를 유도하고, CNLS (Complex Non-linear Least Squares) 법을 사용하여 분석하였다. 양극 쪽의 전하전이 저항과 전기이중층 커패시턴스가 음극보다 높았다. 겔 저항은 충전상태가 감소함에 따라 증가하며 이는 VRLA 전지의 충전상태를 판단하는데 중요한 파라미터임을 확인하였다.

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF

이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정 (State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter)

  • 정홍련;김준호;김승우;김종훈;강은진;윤정우
    • 마이크로전자및패키징학회지
    • /
    • 제31권1호
    • /
    • pp.16-22
    • /
    • 2024
  • 전기자동차와 신재생에너지에 관한 관심이 높아지면서 건설장비 산업분야에서도 리튬이온 배터리를 접목하려는 요구가 높아지고 있다. 건설중장비는 건설 현장의 다양한 작업으로 인해 전류 용량의 감소가 급속히 진행되기 때문에 SOC(State of Charge) 및 SOH(State of Health) 같은 배터리의 상태를 더욱 정확하게 추정할 필요가 있다. 본 논문에서는 SOC와 SOH를 동시에 추정이 가능한 적응제어 기법 기반 이중확장칼만필터(Dual Extended Kalman Filter, DEKF) 알고리즘을 이용하여 실제 측정데이터와의 오차를 비교하였다. 배터리 충전 상태 예측을 위해 배터리 셀을 완전 충전 후 0.2C-rate조건에서 SOC 5% 간격으로 OCV를 측정하였고, 배터리의 열화를 판단할 수 있는 건전성 지표 확보를 위해 다양한 C-rate(0.2, 0.3, 0.5, 1.0, 1.5C rate) 조건에서 50 Cycle 동안 노화 실험을 수행하였다. DEKF를 이용한 SOC 및 SOH 추정 오차는 C-rate이 커질수록 커지는 경향을 보였으며 특히 SOC 추정결과, 0.2, 0.5 및 1C-rate에서 6%이하로 나타남을 확인하였다. 또한 SOH 추정 결과는 0.2 와 0.3C-rate에서 각각 최대오차 1.0% 및 1.3% 이내로 좋은 성능을 보이는 것으로 확인하였다. 다만, C-rate가 0.5C-rate에서 1.5C-rate으로 증가함에 따라 추정오차도 1.5%에서 2%로 다소 증가하는 것을 확인할 수 있었으나, 모든 C-rate 조건에서 DEKF를 사용한 SOH의 추정 성능은 약 2% 이내인 것으로 나타났다.

Gerdien 이온측정기를 이용한 에어로졸의 하전 특성 분석에 관한 연구 (Study on electrical charge distribution of aerosol using a Gerdien ion counter)

  • 조윤행;심준목;신일경;육세진;박현설
    • 한국입자에어로졸학회지
    • /
    • 제14권1호
    • /
    • pp.17-24
    • /
    • 2018
  • Since the motion of the charged particle strongly depends on its charge characteristics, information on charge distributions of target particles is one of the important variables in aerosol research. In this study, charged distribution of atomized NaCl particles were measured using a Gerdien type ion counter. Two kinds of particle charging conditions were used in this study. First, atomized NaCl particles were passed through an aerosol neutralizer to have a Boltzmann charge distribution, and then its charge distribution was measured. In this case, the portion of uncharged particles was compared with the portion obtained from the Boltzmann charge distribution for verifying the suggested experimental method. Second, same experiment was conducted without the aerosol neutralizer to measure the charge distribution of atomized and un-neutralized NaCl particles. In the conclusion, the portion of uncharged, negatively charged and positively charged particles were 19%, 62% and 20%, respectively, for neutralized particles. The atomized particles, which was generated without the aerosol neutralizer, also had almost a zero charge state, but the standard deviation in charge distribution was larger than that of neutralized particles. The test method proposed in this study is expected to be used in various aerosol research fields because it can obtain simple information on the particle charge characteristics more easily and quickly than the existing test methods.

On Thermal and State-of-Charge Balancing using Cascaded Multi-level Converters

  • Altaf, Faisal;Johannesson, Lars;Egardt, Bo
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.569-583
    • /
    • 2013
  • In this study, the simultaneous use of a multi-level converter (MLC) as a DC-motor drive and as an active battery cell balancer is investigated. MLCs allow each battery cell in a battery pack to be independently switched on and off, thereby enabling the potential non-uniform use of battery cells. By exploiting this property and the brake regeneration phases in the drive cycle, MLCs can balance both the state of charge (SoC) and temperature differences between cells, which are two known causes of battery wear, even without reciprocating the coolant flow inside the pack. The optimal control policy (OP) that considers both battery pack temperature and SoC dynamics is studied in detail based on the assumption that information on the state of each cell, the schedule of reciprocating air flow and the future driving profile are perfectly known. Results show that OP provides significant reductions in temperature and in SoC deviations compared with the uniform use of all cells even with uni-directional coolant flow. Thus, reciprocating coolant flow is a redundant function for a MLC-based cell balancer. A specific contribution of this paper is the derivation of a state-space electro-thermal model of a battery submodule for both uni-directional and reciprocating coolant flows under the switching action of MLC, resulting in OP being derived by the solution of a convex optimization problem.

Synthesis and Characterization of Peripherally Ferrocene-modified Zinc Phthalocyanine for Dye-sensitized Solar Cell

  • An, Min-Shi;Kim, Soon-Wha;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3272-3278
    • /
    • 2010
  • Synthesis and structural characterization of peripherally ferrocene-substituted zinc phthalocyanine (ZnPc-Fc) were carried out for efficient far-red/near-IR performance in dye-sensitized nanostructured $TiO_2$ solar cells. Incorporating ferrocene into phthalocyanine strongly improved the dye solubility in polar organic solvents, and reduced surface aggregation due to the steric effect of bulky ferrocene substituents. The involvement of electron transfer reaction pathways between ferrocene and phthalocyanine in ZnPc-Fc was evidenced by completely quenched fluorescence from S1 state (< 0.08% vs ZnPc). Strong absorption bands at 542 and 682 nm were observed in the transient absorption spectroscopy of ZnPc-Fc in DMSO, which was excited at a 670 nm laser pulse with a 15 ps full width at half maximum. Also, the excited state absorption signals at 450 - 600 and 750 - 850 nm appeared from the formation of charge separated state of phthalocyanine's anion. The lifetime of the charge separate state in ZnPc-Fc was determined to be $170{\pm}8$ ps, which was almost 17 times shorter than that of the ZnPc.