• Title/Summary/Keyword: State-Space

Search Result 3,325, Processing Time 0.028 seconds

Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam

  • Manjunath, T. C.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.283-308
    • /
    • 2005
  • This paper features about the modeling and design of a fast output sampling feedback controller for a smart Timoshenko beam system for a SISO case by considering the first 3 vibratory modes. The beam structure is modeled in state space form using FEM technique and the Timoshenko beam theory by dividing the beam into 4 finite elements and placing the piezoelectric sensor/actuator at one location as a collocated pair, i.e., as surface mounted sensor/actuator, say, at FE position 2. State space models are developed for various aspect ratios by considering the shear effects and the axial displacements. The effects of changing the aspect ratio on the master structure is observed and the performance of the designed FOS controller on the beam system is evaluated for vibration control.

Analysis of the Three Phase Inductor-Converter Bridge Circuit by Means of State-Space Averaging Method. (상태변수 평균화법에 의한 삼상 ICB회로 해석)

  • Park, Min-Ho;Hong, Soon-Chan;Choy, Ick;Oh, Soo-Hong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.9
    • /
    • pp.701-709
    • /
    • 1989
  • The time-averaged behavior of the three-phase Inductor-Converter Bridge (ICB) circuit has been analyzed by using the state-space averaging method. Especially, a second order approximation in the matrix expansion makes the analysis possible. The results are in a closed form which is quite different from the conventional solution obtained by using the Fourier Series. Therefore, the computational difficulties in evaluating the infinite Fourier series can be avoided and the results derived in this paper are available expecially in real time control. By comparing with the Fourier result, it has been verified that the analysis by means of the state-space averaging method is more accurate and simple. The digital simulation and the equivalent experiments have also been carried out to confirm the theoretical results.

  • PDF

State-space formulation for simultaneous identification of both damage and input force from response sensitivity

  • Lu, Z.R.;Huang, M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.157-172
    • /
    • 2011
  • A new method for both local damage(s) identification and input excitation force identification of beam structures is presented using the dynamic response sensitivity-based finite element model updating method. The state-space approach is used to calculate both the structural dynamic responses and the responses sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to structural physical parameters are calculated in time domain and compared to those by using Newmark method in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are identified from only several acceleration measurements. Local damages and the input excitation force are identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method.

Exact solutions of axisymmetric free vibration of transversely isotropic magnetoelectroelastic laminated circular plates

  • Chen, Jiangying;Xu, Rongqiao;Huang, Xusheng;Ding, Haojiang
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.115-127
    • /
    • 2006
  • The axisymmetric free vibrations of transversely isotropic magnetoelectroelastic laminated circular plates are studied. Based on the three-dimensional governing equations of magnetoelectroelastic medium, the state space equations of laminated circular plates are obtained. By using the finite Hankel transform and rendering the free terms left by the transform in terms of the boundary quantities, the solutions of the state space equations are given for two kinds of boundary conditions. The frequency equations of the free vibration are derived using the propagator matrix method and the boundary conditions at top and bottom surfaces. By virtue of the inverse Hankel transform, the mode shapes are also determined. Since the solutions strictly satisfy the governing equations in the region and the boundary conditions at the edges, they are the three-dimensionally exact. Finally, the natural frequencies of such plates are tabulated and compared with those of the piezoelectric and elastic plates in the numerical example.

CELL STATE SPACE ALGORITHM AND NEURAL NETWORK BASED FUZZY LOGIC CONTROLLER DESIGN

  • Aao;Ding, Gen-Ya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.972-974
    • /
    • 1993
  • This paper presents a new method to automatically design fuzzy logic controller(FLC). The main problems of designing FLC are how to optimally and automatically select the control rules and the parameters of membership function (MF). Cell state space algorithms (CSS), differential competitive learning (DCL) and multialyer neural network are combined in this paper to solve the problems. When the dynamical model of a control process is known. CSS can be used to generate a group of optimal input output pairs(X, Y) used by a controller. The(X, Y) then can be used to determine the FLC rules by DCL and to determine the optimal parameters of MF by DCL and to determine the optimal parameters of MF by multilayer neural network trained by BP algorithm.

  • PDF

A Recognition Method of HANGEUL Pattern Using a State Space Search (상태공간탐색을 이용한 한글패턴 인식방법)

  • 김상진;이병래;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.4
    • /
    • pp.267-277
    • /
    • 1990
  • In this paper, a method of separation and recognition of phonemes from a composite Korean character pattern through a state space search strategy which is a problem solving method in artificial intelligence is proposed. To correlate the separating of phonemes with their recognizing, the problem is represented into the state space, on which a search strategy is performed. For the minimization of search area, the structural information based on the composition rules of Korean characters and the positional information of phonemes in the basic forms are used. And the effectiveness of the approach is shown by a computer simulation.

  • PDF

The Realization of State-Space Digital Filters with Minimum Output Error Variance by Weighted Function (가중함수에 의한 최소 출력오차 분산을 갖는 상태공간 디지틀 필터 실현)

  • 김정화;정찬수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.9
    • /
    • pp.909-917
    • /
    • 1992
  • This paper proposes the realization of state-space digital filters with minimum output error variance. The algorithm is transforms of controllability and observability gramian in linear time invariant systems by weighted function and can improve performance of the digital filters by reducing the put error variance for state space coeffient variation. A numerical example shows that algorithm structure has much lower output error variance than that of other four structures(canonical, parallel, statistical sensitivity, balanced).

  • PDF

Study on Space Configuration and Area Holding State of Variation Type at the Latest Built Middle Schools in Gwangju (최근에 설립된 광주지역 중학교의 교과교실제 공간 분석)

  • Kim, Jeong-Gyu;Kim, Jeong-So
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.20 no.5
    • /
    • pp.3-10
    • /
    • 2013
  • This study was carried out to obtain basic data for architectural plans on the facilities relocation needed in operating the departmentalized classroom system at the latest built middle schools. For this, floor plans of ten middle schools built in Gwangju after 2009 were analyzed about space configuration and area holding state. The process of this study is as follows: (1) To investigate proper area holding state for operating variation type, this study analyzed area of departmentalized classrooms, homebases and teachers' offices. (2) To investigate space configuration for operating variation type, this study analyzed composition of departmentalized classrooms, learning-support facilities and homebases. (3) On the base of those analyses, this study proposed some directions for architectural plans on the facilities relocation.

A Bayesian Approach for the Adaptive Forecast on the Simple State Space Model (구조변화가 발생한 단순 상태공간모형에서의 적응적 예측을 위한 베이지안접근)

  • Jun, Duk-Bin;Lim, Chul-Zu;Lee, Sang-Kwon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.485-492
    • /
    • 1998
  • Most forecasting models often fail to produce appropriate forecasts because we build a model based on the assumption of the data being generated from the only one stochastic process. However, in many real problems, the time series data are generated from one stochastic process for a while and then abruptly undergo certain structural changes. In this paper, we assume the basic underlying process is the simple state-space model with random level and deterministic drift but interrupted by three types of exogenous shocks: level shift, drift change, outlier. A Bayesian procedure to detect, estimate and adapt to the structural changes is developed and compared with simple, double and adaptive exponential smoothing using simulated data and the U.S. leading composite index.

  • PDF

Derivation Algorithm of State-Space Equation for Production Systems Based on Max-Plus Algebra

  • Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • This paper proposes a new algorithm for determining an optimal control input for production systems. In many production systems, completion time should be planned within the due dates by taking into account precedence constraints and processing times. To solve this problem, the max-plus algebra is an effective approach. The max-plus algebra is an algebraic system in which the max operation is addition and the plus operation is multiplication, and similar operation rules to conventional algebra are followed. Utilizing the max-plus algebra, constraints of the system are expressed in an analogous way to the state-space description in modern control theory. Nevertheless, the formulation of a system is currently performed manually, which is very inefficient when applied to practical systems. Hence, in this paper, we propose a new algorithm for deriving a state-space description and determining an optimal control input with several constraint matrices and parameter vectors. Furthermore, the effectiveness of this proposed algorithm is verified through execution examples.