• Title/Summary/Keyword: State Structure Function

Search Result 521, Processing Time 0.033 seconds

The Multiple Traveling Purchaser Problem for Minimizing the Maximal Acquisition Completion Time in Wartime (전시 최장 획득완료시간 최소화를 위한 복수 순회구매자 문제)

  • Choi, Myung-Jin;Moon, Woo-Bum;Choi, Jin-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.458-466
    • /
    • 2011
  • In war time, minimizing the logistics response time for supporting military operations is strongly needed. In this paper, i propose the mathematical formulation for minimizing the maximal acquisition completion time in wartime or during a state of emergency. The main structure of this formulation is based on the traveling purchaser problem (TPP), which is a generalized form of the well-known traveling salesman problem (TSP). In the case of the general TPP, an objective function is to minimize the sum of the traveling cost and the purchase cost. However, in this study, the objective function is to minimize the traveling cost only. That's why it's more important to minimize the traveling cost (time or distance) than the purchase cost in wartime or in a state of emergency. I generate a specific instance and find out the optimal solution of this instance by using ILOG OPL STUDIO (CPLEX version 11.1).

Performance Improvement of an Extended Kalman Filter Using Simplified Indirect Inference Method Fuzzy Logic (간편 간접추론 방식의 퍼지논리에 의한 확장 칼만필터의 성능 향상)

  • Chai, Chang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2016
  • In order to improve the performance of an extended Kalman filter, a simplified indirect inference method (SIIM) fuzzy logic system (FLS) is proposed. The proposed FLS is composed of two fuzzy input variables, four fuzzy rules and one fuzzy output. Two normalized fuzzy input variables are the variance between the trace of a prior and a posterior covariance matrix, and the residual error of a Kalman algorithm. One fuzzy output variable is the weighting factor to adjust for the Kalman gain. There is no need to decide the number and the membership function of input variables, because we employ the normalized monotone increasing/decreasing function. The single parameter to be determined is the magnitude of a universe of discourse in the output variable. The structure of the proposed FLS is simple and easy to apply to various nonlinear state estimation problems. The simulation results show that the proposed FLS has strong adaptability to estimate the states of the incoming/outgoing moving objects, and outperforms the conventional extended Kalman filter algorithm by providing solutions that are more accurate.

Extraction of rational functions by forced vibration method for time-domain analysis of long-span bridges

  • Cao, Bochao;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.561-577
    • /
    • 2013
  • Rational Functions are used to express the self-excited aerodynamic forces acting on a flexible structure for use in time-domain flutter analysis. The Rational Function Approximation (RFA) approach involves obtaining of these Rational Functions from the frequency-dependent flutter derivatives by using an approximation. In the past, an algorithm was developed to directly extract these Rational Functions from wind tunnel section model tests in free vibration. In this paper, an algorithm is presented for direct extraction of these Rational Functions from section model tests in forced vibration. The motivation for using forced-vibration method came from the potential use of these Rational Functions to predict aerodynamic loads and response of flexible structures at high wind speeds and in turbulent wind environment. Numerical tests were performed to verify the robustness and performance of the algorithm under different noise levels that are expected in wind tunnel data. Wind tunnel tests in one degree-of-freedom (vertical/torsional) forced vibration were performed on a streamlined bridge deck section model whose Rational Functions were compared with those obtained by free vibration for the same model.

A Condition Processing System of Active Rules Using Analyzing Condition Predicates (조건 술어 분석을 이용한 능동규칙의 조건부 처리 시스템)

  • Lee, Gi-Uk;Kim, Tae-Sik
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.21-30
    • /
    • 2002
  • The active database system introduces the active rules detecting specified state. As the condition evaluation of the active rules is performed every time an event occurs, the performance of the system has a great influence, depending on the conditions processing method. In this paper, we propose the conditions processing system with the preprocessor which determines the delta tree structure, constructs the classification tree, and generates the aggregate function table. Due to the characteristics of the active database through which the active rules can be comprehended beforehand, the preprocessor can be introduced. In this paper, the delta tree which can effectively process the join, selection operations, and the aggregate function is suggested, and it can enhance the condition evaluation performance. And we propose the classification tree which effectively processes the join operation and the aggregate function table processing the aggregate function which demands high cost. In this paper, the conditions processing system can be expected to enhance the performance of conditions processing in the active rules as the number of conditions comparison decreases because of the structure which is made in the preprocessor.

Condition Assessment for Wind Turbines with Doubly Fed Induction Generators Based on SCADA Data

  • Sun, Peng;Li, Jian;Wang, Caisheng;Yan, Yonglong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.689-700
    • /
    • 2017
  • This paper presents an effective approach for wind turbine (WT) condition assessment based on the data collected from wind farm supervisory control and data acquisition (SCADA) system. Three types of assessment indices are determined based on the monitoring parameters obtained from the SCADA system. Neural Networks (NNs) are used to establish prediction models for the assessment indices that are dependent on environmental conditions such as ambient temperature and wind speed. An abnormal level index (ALI) is defined to quantify the abnormal level of the proposed indices. Prediction errors of the prediction models follow a normal distribution. Thus, the ALIs can be calculated based on the probability density function of normal distribution. For other assessment indices, the ALIs are calculated by the nonparametric estimation based cumulative probability density function. A Back-Propagation NN (BPNN) algorithm is used for the overall WT condition assessment. The inputs to the BPNN are the ALIs of the proposed indices. The network structure and the number of nodes in the hidden layer are carefully chosen when the BPNN model is being trained. The condition assessment method has been used for real 1.5 MW WTs with doubly fed induction generators. Results show that the proposed assessment method could effectively predict the change of operating conditions prior to fault occurrences and provide early alarming of the developing faults of WTs.

Molecular Diffusion of Water in Paper (IV) - Mathematical model and fiber-phase moisture diffusivities for unsteady-state moisture diffusion through paper substrates - (종이내 수분확산 (제4보) - 종이의 비정상상태 수분확산 모델과 섬유상 수분확산 계수 -)

  • 윤성훈;박종문;이병철
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • An unsteady-state moisture diffusion through cellulosic fibers in paper was characterized from the moisture sorption experiment and the mathematical modeling. The sorption experiment was conducted by exposing thin dry paper specimens to a constant temperature-humidity environment. Oven dried blotting papers and filter papers were used as test samples and the gains of their weights were constantly monitored and recorded as a function of sorption time. For a mathematical approach, the moisture transport was assumed to be an one-dimensional diffusion in thickness direction through the geometrically symmetric structure of paper. The model was asymptotically simplified with a short-term approximation. It gave us a new insight into the moisture uptake phenomena as a function of square root of sorption time. The fiber-phase moisture diffusivities(FPMD) of paper samples were then determined by correlating the experimental data with the unsteady-state diffusion model obtained. Their values were found to be on the order of magnitude of $10^{-6}-10^{-7}cm^2$/min., which were equivalent to the hypothetical effective diffusion coefficients at the limit of zero porosity. The moisture sorption curve predicted from the model fairly agreed with that obtained from the experiment at some limited initial stages of the moisture uptake process. The FPMD value of paper significantly varied depending upon the current moisture content of paper. The mean FPMD was about 0.7-0.8 times as large as the short-term approximated FPMD.

Engineering criticality analysis on an offshore structure using the first- and second-order reliability method

  • Kang, Beom-Jun;Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.577-588
    • /
    • 2016
  • Due to the uncertainties related to the flaw assessment parameters, such as flaw size, fracture toughness, loading spectrum and so on, the probability concept is preferred over deterministic one in flaw assessment. In this study, efforts have been made to develop the reliability based flaw assessment procedure which combines the flaw assessment procedure of BS7910 and first-and second-order reliability methods (FORM/SORM). Both crack length and depth of semi-elliptical surface crack at weld toe were handled as random variable whose probability distribution was defined as Gaussian with certain means and standard deviations. Then the limit state functions from static rupture and fatigue perspective were estimated using FORM and SORM in joint probability space of crack depth and length. The validity of predicted limit state functions were checked by comparing it with those obtained by Monte Carlo simulation. It was confirmed that the developed methodology worked perfectly in predicting the limit state functions without time-consuming Monte Carlo simulation.

Experimental investigation of a method for diagnosing wall thinning in an artificially thinned carbon steel elbow based on changes in modal characteristics

  • Byunyoung Chung ;Jonghwan Kim ;Daesic Jang;Sunjin Kim;Youngchul Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.947-957
    • /
    • 2023
  • Curved cylindrical structures such as elbows have a non-uniform thickness distribution due to their fabrication process, and as a result have a number of complex mode shapes, including circumferential and axial nodal patterns. In nuclear power plants, material degradation is induced in pipes by flow accelerated erosion and corrosion, causing the wall thickness of carbon steel elbows to gradually thin. The corresponding frequencies of each mode shape vary according to the wall thinning state. Therefore, the thinning state can be estimated by monitoring the varying modal characteristics of the elbow. This study investigated the varying modal characteristics of artificially thinned carbon steel elbows for each thinning state using numerical simulation and experimental methods (MRIT, Multiple Reference Impact Test). The natural frequencies of specified mode shapes were extracted, and results confirmed they linearly decreased with increasing thinning. In addition, by comparing single FRF (Frequency Response Function) data with the results of MRIT, a concise and cost effective thinning estimation method was suggested.

Conformational Sampling of Flexible Ligand-binding Protein Loops

  • Lee, Gyu-Rie;Shin, Woong-Hee;Park, Hahn-Beom;Shin, Seok-Min;Seok, Cha-Ok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.770-774
    • /
    • 2012
  • Protein loops are often involved in diverse biological functions, and some functional loops show conformational changes upon ligand binding. Since this conformational change is directly related to ligand binding pose and protein function, there have been numerous attempts to predict this change accurately. In this study, we show that it is plausible to obtain meaningful ensembles of loop conformations for flexible, ligand-binding protein loops efficiently by applying a loop modeling method. The loop modeling method employs triaxial loop closure algorithm for trial conformation generation and conformational space annealing for global energy optimization. When loop modeling was performed on the framework of ligand-free structure, loop structures within $3\AA$ RMSD from the crystal loop structure for the ligand-bound state were sampled in 4 out of 6 cases. This result is encouraging considering that no information on the ligand-bound state was used during the loop modeling process. We therefore expect that the present loop modeling method will be useful for future developments of flexible protein-ligand docking methods.

LOW-LEVEL RADIO EMISSION FROM RADIO GALAXIES AND IMPLICATIONS FOR THE LARGE SCALE STRUCTURE

  • KRISHNA GOPAL;WIITA PAUL J.;BARAI PARAMITA
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.517-525
    • /
    • 2004
  • We present an update on our proposal that during the 'quasar era' (1.5 $\le$ z $\le$ 3), powerful radio galaxies could have played a major role in the enhanced global star-formation, and in the widespread magnetization and metal pollution of the universe. A key ingredient of this proposal is our estimate that the true cosmological evolution of the radio galaxy population is likely to be even steeper than what has been inferred from flux-limited samples of radio sources with redshift data, when an allowance is made for the inverse Compton losses on the cosmic microwave background which were much greater at higher redshifts. We thus estimate that a large fraction of the clumps of proto-galactic material within the cosmic web of filaments was probably impacted by the expanding lobes of radio galaxies during the quasar era. Some recently published observational evidence and simulations which provide support for this picture are pointed out. We also show that the inverse Compton x-ray emission from the population of radio galaxies during the quasar era, which we inferred to be largely missing from the derived radio luminosity function, is still only a small fraction of the observed soft x-ray background (XRB) and hence the limit imposed on this scenario by the XRB is not violated.