• Title/Summary/Keyword: State Space Model

Search Result 1,025, Processing Time 0.026 seconds

A Study on the State Space Identification Model of the Dynamic System using Neural Networks (신경회로망을 이용한 동적 시스템의 상태 공간 인식 모델에 관한 연구)

  • 이재현;강성인;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.115-120
    • /
    • 1997
  • System identification is the task of inferring a mathematical description of a dynamic system from a series of measurements of the system. There are several motives for establishing mathematical descriptions of dynamic systems. Typical applications encompass simulation, prediction, fault diagnostics, and control system design. The paper demonstrates that neural networks can be used effective for the identification of nonlinear dynamical systems. The content of this paper concerns dynamic neural network models, where not all inputs to and outputs from the networks are measurable. Only one model type is treated, the well-known Innovation State Space model(Kalman Predictor). The identification is based only on input/output measurements, so in fact a non-linear Extended Kalman Filter problem is solved. Even for linear models this is a non-linear problem without any assurance of convergence, and in spite of this fact an attempt is made to apply the principles from linear models, an extend them to non-linear models. Computer simulation results reveal that the identification scheme suggested are practically feasible.

  • PDF

Generalized State-Space Modeling of Three Phase Self-Excited Induction Generator For Dynamic Characteristics and Analysis

  • Kumar Garlapati Satish;Kishore Avinash
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.482-489
    • /
    • 2006
  • This paper presents the generalized dynamic modeling of self-excited induction generator (SEIG) using state-space approach. The proposed dynamic model consists of induction generator; self-excitation capacitance and load model are expressed in stationary d-q reference frame with the actual saturation curve of the machine. An artificial neural network model is implemented to estimate the machine magnetizing inductance based on the knowledge of magnetizing current. The dynamic performance of SEIG is investigated under no load, with the load, perturbation of load, short circuit at stator terminals, and variation of prime mover speed, variation of capacitance value by considering the effect of main and cross-flux saturation. During voltage buildup the variation in magnetizing inductance is taken into consideration. The performance of SEIG system under various conditions as mentioned above is simulated using MATLAB/SIMULINK and the simulation results demonstrates the feasibility of the proposed system.

Automatic Synthesis of Chemical Processes by a State Space Approach (상태공간 접근법에 의한 화학공정의 자동합성)

  • 최수형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.832-835
    • /
    • 2003
  • The objective of this study is to investigate the possibility of chemical process synthesis purely based on mathematical programming when given an objective, feed conditions, product specifications, and model equations for available process units. A method based on a state space approach is proposed, and applied to an example problem with a reactor, a heat exchanger, and a separator. The results indicate that a computer can automatically synthesize an optimal process without any heuristics or expertise in process design provided that global optimization techniques are improved to be suitable for large problems.

A State Space Modeling and Evolutionary Programming Approach to Automatic Synthesis of Chemical Processes

  • Choi, Soo-Hyoung;Lee, Bom-Sock;Chung, Chang-Bock
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1870-1873
    • /
    • 2004
  • The objective of this study is to investigate the possibility of chemical process synthesis purely based on mathematical programming when given an objective, feed conditions, product specifications, and model equations for available process units. A method based on a state space approach is proposed, and applied to an example problem with a reactor, a heat exchanger, and a separator. The results indicate that a computer can automatically synthesize an optimal process without any heuristics or expertise in process design provided that global optimization techniques are improved to be suitable for large problems.

  • PDF

Performance Improvement of a Bidirectional DC-DC Converter for Battery Chargers using an LCLC Filter

  • Moon, Sang-Ho;Jou, Sung-Tak;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.560-573
    • /
    • 2015
  • In this paper, a battery charger is introduced for an interleaved DC-DC converter with an LCLC filter. To improve the overall performance of the DC-DC converter for battery charger, a method is proposed. First, the structure of the system is presented. Second, an LC filter is compared to an LCLC filter in terms of the response characteristics and size. Third, the small-signal model of a bidirectional DC-DC converter using a state-space averaging method and the required transfer functions are introduced. Next, the frequency characteristics of the converter are discussed. Finally, the simulation and experimental results are analyzed to verify the proposed state space of the bidirectional converter.

Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam

  • Manjunath, T. C.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.283-308
    • /
    • 2005
  • This paper features about the modeling and design of a fast output sampling feedback controller for a smart Timoshenko beam system for a SISO case by considering the first 3 vibratory modes. The beam structure is modeled in state space form using FEM technique and the Timoshenko beam theory by dividing the beam into 4 finite elements and placing the piezoelectric sensor/actuator at one location as a collocated pair, i.e., as surface mounted sensor/actuator, say, at FE position 2. State space models are developed for various aspect ratios by considering the shear effects and the axial displacements. The effects of changing the aspect ratio on the master structure is observed and the performance of the designed FOS controller on the beam system is evaluated for vibration control.

CELL STATE SPACE ALGORITHM AND NEURAL NETWORK BASED FUZZY LOGIC CONTROLLER DESIGN

  • Aao;Ding, Gen-Ya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.972-974
    • /
    • 1993
  • This paper presents a new method to automatically design fuzzy logic controller(FLC). The main problems of designing FLC are how to optimally and automatically select the control rules and the parameters of membership function (MF). Cell state space algorithms (CSS), differential competitive learning (DCL) and multialyer neural network are combined in this paper to solve the problems. When the dynamical model of a control process is known. CSS can be used to generate a group of optimal input output pairs(X, Y) used by a controller. The(X, Y) then can be used to determine the FLC rules by DCL and to determine the optimal parameters of MF by DCL and to determine the optimal parameters of MF by multilayer neural network trained by BP algorithm.

  • PDF

Derivation Algorithm of State-Space Equation for Production Systems Based on Max-Plus Algebra

  • Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • This paper proposes a new algorithm for determining an optimal control input for production systems. In many production systems, completion time should be planned within the due dates by taking into account precedence constraints and processing times. To solve this problem, the max-plus algebra is an effective approach. The max-plus algebra is an algebraic system in which the max operation is addition and the plus operation is multiplication, and similar operation rules to conventional algebra are followed. Utilizing the max-plus algebra, constraints of the system are expressed in an analogous way to the state-space description in modern control theory. Nevertheless, the formulation of a system is currently performed manually, which is very inefficient when applied to practical systems. Hence, in this paper, we propose a new algorithm for deriving a state-space description and determining an optimal control input with several constraint matrices and parameter vectors. Furthermore, the effectiveness of this proposed algorithm is verified through execution examples.

A Study on the Point-Mass Filter for Nonlinear State-Space Models (비선형 상태공간 모델을 위한 Point-Mass Filter 연구)

  • Yeongkwon Choe
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.57-62
    • /
    • 2023
  • In this review, we introduce the non-parametric Bayesian filtering algorithm known as the point-mass filter (PMF) and discuss recent studies related to it. PMF realizes Bayesian filtering by placing a deterministic grid on the state space and calculating the probability density at each grid point. PMF is known for its robustness and high accuracy compared to other nonparametric Bayesian filtering algorithms due to its uniform sampling. However, a drawback of PMF is its inherently high computational complexity in the prediction phase. In this review, we aim to understand the principles of the PMF algorithm and the reasons for the high computational complexity, and summarize recent research efforts to overcome this challenge. We hope that this review contributes to encouraging the consideration of PMF applications for various systems.

Output-error state-space identification of vibrating structures using evolution strategies: a benchmark study

  • Dertimanis, Vasilis K.
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.17-37
    • /
    • 2014
  • In this study, four widely accepted and used variants of Evolution Strategies (ES) are adapted and applied to the output-error state-space identification problem. The selection of ES is justified by prior strong indication of superior performance to similar problems, over alternatives like Genetic Algorithms (GA) or Evolutionary Programming (EP). The ES variants that are being tested are (i) the (1+1)-ES, (ii) the $({\mu}/{\rho}+{\lambda})-{\sigma}$-SA-ES, (iii) the $({\mu}_I,{\lambda})-{\sigma}$-SA-ES, and (iv) the (${\mu}_w,{\lambda}$)-CMA-ES. The study is based on a six-degree-of-freedom (DOF) structural model of a shear building that is characterized by light damping (up to 5%). The envisaged analysis is taking place through Monte Carlo experiments under two different excitation types (stationary / non-stationary) and the applied ES are assessed in terms of (i) accurate modal parameters extraction, (ii) statistical consistency, (iii) performance under noise-corrupted data, and (iv) performance under non-stationary data. The results of this suggest that ES are indeed competitive alternatives in the non-linear state-space estimation problem and deserve further attention.