• Title/Summary/Keyword: State Safety Program

Search Result 179, Processing Time 0.032 seconds

Fault Detection in Automatic Identification System Data for Vessel Location Tracking

  • Da Bin Jeong;Hyun-Taek Choi;Nak Yong Ko
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.257-269
    • /
    • 2023
  • This paper presents a method for detecting faults in data obtained from the Automatic Identification System (AIS) of surface vessels. The data include latitude, longitude, Speed Over Ground (SOG), and Course Over Ground (COG). We derive two methods that utilize two models: a constant state model and a derivative augmented model. The constant state model incorporates noise variables to account for state changes, while the derivative augmented model employs explicit variables such as first or second derivatives, to model dynamic changes in state. Generally, the derivative augmented model detects faults more promptly than the constant state model, although it is vulnerable to potentially overlooking faults. The effectiveness of this method is validated using AIS data collected at a harbor. The results demonstrate that the proposed approach can automatically detect faults in AIS data, thus offering partial assistance for enhancing navigation safety.

Formal Verification of PLC Program Safety in Manufacturing Automation System (생산자동화시스템 PLC 제어프로그램의 안전성 정형검증에 관한 연구)

  • Park, Chang Mok
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.179-192
    • /
    • 2015
  • In an automated industry PLC plays a central role to control the automation system. Therefore, fault free operation of PLC controlled automation system is essential in order to maximize a firm's productivity. A prior test of control system is a practical way to check fault operations, but it is a time consuming job and can not check all possible fault operation. A formal verification of PLC program could be a best way to check all possible fault situation. Tracing the history of the study on formal verification, we found three problems, the first is that a formal representation of PLC control system is incomplete, the second is a state explosion problem and the third is that the verification result is difficult to use for the correction of control program. In this paper, we propose a transformation method to reproduce the control system correctly in formal model and efficient procedure to verify and correct the control program using verification result. To demonstrate the proposed method, we provided a suitable case study of an automation system.

Development of Program for Qualitative Risk Based Inspection (RBI) using API-581 (API-581에 의한 정성적 위험기반검사(RBI) 프로그램 개발)

  • 이헌창;유준;김환주;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Industrial facilities are becoming more complex and various with rapidly developing technologies. A number of installations and equipments are increased to improve productivity, and they are operated under the condition of high temperature and pressure. They are continuously repaired, replaced or abolished because of the deterioration with time, but their repair and replacement are not easy for economical and environmental concerns. If possible, the deteriorating equipments should be inspected and repaired effectively considering the state of maintenance and preservation, economic efficiency, and safety. That's where RBI(Risk Based Inspection) fits in. Even if RBI technology has been known among specialists, there were no tools readily available and it was hard to practice and apply RBI in industrial inspection and safety management. In the development of the qualitative RBI, the overall algorithm adopted API-581 BRD. The qualitative RBI program was developed to search the appling process.

Searching for critical failure surface in slope stability analysis by using hybrid genetic algorithm

  • Li, Shouju;Shangguan, Zichang;Duan, Hongxia;Liu, Yingxi;Luan, Maotian
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.85-96
    • /
    • 2009
  • The radius and coordinate of sliding circle are taken as searching variables in slope stability analysis. Genetic algorithm is applied for searching for critical factor of safety. In order to search for critical factor of safety in slope stability analysis efficiently and in a robust manner, some improvements for simple genetic algorithm are proposed. Taking the advantages of efficiency of neighbor-search of the simulated annealing and the robustness of genetic algorithm, a hybrid optimization method is presented. The numerical computation shows that the procedure can determine the minimal factor of safety and be applied to slopes with any geometry, layering, pore pressure and external load distribution. The comparisons demonstrate that the genetic algorithm provides a same solution when compared with elasto-plastic finite element program.

Strengthening Human Immunodeficiency Virus and Tuberculosis Prevention Capacity among South African Healthcare Workers: A Mixed Methods Study of a Collaborative Occupational Health Program

  • Liautaud, Alexandre;Adu, Prince A.;Yassi, Annalee;Zungu, Muzimkhulu;Spiegel, Jerry M.;Rawat, Angeli;Bryce, Elizabeth A.;Engelbrecht, Michelle C.
    • Safety and Health at Work
    • /
    • v.9 no.2
    • /
    • pp.172-179
    • /
    • 2018
  • Background: Insufficient training in infection control and occupational health among healthcare workers (HCWs) in countries with high human immunodeficiency virus (HIV) and tuberculosis (TB) burdens requires attention. We examined the effectiveness of a 1-year Certificate Program in Occupational Health and Infection Control conducted in Free State Province, South Africa in an international partnership to empower HCWs to become change agents to promote workplace-based HIV and TB prevention. Methods: Questionnaires assessing reactions to the program and Knowledge, Attitudes, Skills, and Practices were collected pre-, mid-, and postprogram. Individual interviews, group project evaluations, and participant observation were also conducted. Quantitative data were analyzed using Wilcoxon signed-rank test. Qualitative data were thematically coded and analyzed using the Kirkpatrick framework. Results: Participants recruited (n = 32) were mostly female (81%) and nurses (56%). Pre-to-post-program mean scores improved in knowledge (+12%, p = 0.002) and skills/practices (+14%, p = 0.002). Preprogram attitude scores were high but did not change. Participants felt empowered and demonstrated attitudinal improvements regarding HIV, TB, infection control, and occupational health. Successful projects were indeed implemented. However, participants encountered considerable difficulties in trying to sustain improvement, due largely to lack of pre-existing knowledge and experience, combined with inadequate staffing and insufficient management support. Conclusion: Training is essential to strengthen HCWs' occupational health and infection control knowledge, attitudes, skills, and practices, and workplace-based training programs such as this can yield impressive results. However, the considerable mentorship resources required for such programs and the substantial infrastructural supports needed for implementation and sustainability of improvements in settings without pre-existing experience in such endeavors should not be underestimated.

Commercial Finite Element Program-based Reliability Analysis of Dam Structures (상용 유한요소 프로그램에 기초한 댐 구조물의 신뢰성해석)

  • 허정원;이정학
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.103-110
    • /
    • 2003
  • A hybrid structural reliability analysis method that integrates a commercial finite element program and a reliability analysis algorithm is proposed to estimate the safety of real structures in this paper. Since finite element method (FEM) is most commonly and widely used in the analysis and design practice of real structures, it appears to be necessary to use general FEM program in the structural reliability analysis. In this case, simple conventional reliability methods cannot be used because the limit state function can only be expressed in an algorithmic form. The response surface method(RSM)-based reliability algorithm with the first-order reliability method (FORM) found to be ideal in this respect and is used in this paper. The intention of use of RSM is to develop, albeit approximately, an explicit expression of the limit state function for real structures. The applicability of the proposed method to real structures is examined with help of the example in consideration of a concrete dam. Both the strength and serviceability limit states are considered in this example.

  • PDF

Effects of High School Corridor Walking Obstacles on Evacuation Safety (고등학교 복도 보행 장애물이 피난 안전성에 미치는 영향)

  • Lee Soon Beom
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.112-119
    • /
    • 2023
  • This study analyzes the effects of personal lockers, drinking fountains, and all-in-one shutters (hereinafter referred to as "corridor walking obstacles") on evacuation safety to suggest the necessity of operating a more effective educational facility safety certification system. To achieve this purpose, the five-story high school building with the obstacles installed in the corridor has been chosen, and evacuation tests through the Pathfinder Simulation Program have been carried out. When the evacuation exit is designated in the current state, where the students are placed on the 2nd, 3rd, and 4th floors and the corridor walking obstacles are applied as a variable, the required safe egress time (RSET) is 322 seconds. This can lead to dangerous results in the event of a disaster by exceeding the available safe egress time (ASET) standard of 240 seconds by 82 seconds. When students are placed on the 1st, 2nd, and 3rd floors under the same conditions, the RSET is 214.5 seconds, 25.5 seconds lower than the ASET standard, indicating that it is effective in reducing the impact of walking obstacles on evacuation time. The safety management plan for walking obstacles in the corridors is discussed, considering the special characteristics of the school corridors. The results of this study can be used as the necessary data for optimizing evacuation routes in corridors and creating a safe, educational environment.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

A Case Study on Engineering Failure Analysis of Link Chain

  • Kim, Tae-Gu;Lee, Seong-Beom;Lee, Hong-Chul
    • Safety and Health at Work
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Objectives: The objective of this study was to investigate the effect of chain installation condition on stress distribution that could eventually cause disastrous failure from sudden deformation and geometric rupture. Methods: Fractographic method used for the failed chain indicates that over-stress was considered as the root cause of failure. 3D modeling and finite element analysis for the chain, used in a crane hook, were performed with a three-dimensional interactive application program, CATIA, commercial finite element analysis and computational fluid dynamic software, ANSYS. Results: The results showed that the state of stress was changed depending on the initial position of the chain that was installed in the hook. Especially, the magnitude of the stress was strongly affected by the bending forces, which are 2.5 times greater (under the simulation condition currently investigated) than that from the plain tensile load. Also, it was noted that the change of load state is strongly related to the failure of parts. The chain can hold an ultimate load of about 8 tons with only the tensile load acting on it. Conclusion: The conclusions of this research clearly showed that a reduction of the loss from similar incidents can be achieved when an operator properly handles the installation of the chain.

Development and validation of the lead-bismuth cooled reactor system code based on a fully implicit homogeneous flow model

  • Ge Li;Wang Jingxin;Fan Kun;Zhang Jie;Shan Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1213-1224
    • /
    • 2024
  • The liquid lead-bismuth cooled fast reactor has been in a single-phase, low-pressure, and high-temperature state for a long time during operation. Considering the requirement of calculation efficiency for long-term transient accident calculation, based on a homogeneous hydrodynamic model, one-dimensional heat conduction model, coolant flow and heat transfer model, neutron kinetics model, coolant and material properties model, this study used the fully implicit difference scheme algorithm of the convection-diffusion term to solve the basic conservation equation, to develop the transient analysis program NUSOL-LMR 2.0 for the lead-bismuth fast reactor system. The steady-state and typical design basis accidents (including reactivity introduction, loss of flow caused by main pump idling, excessive cooling, and plant power outage accidents) for the ABR have been analyzed. The results are compared with the international system analysis software ATHENA. The results indicate that the developed program can stably, accurately, and efficiently predict the transient accident response and safety characteristics of the lead-bismuth fast reactor system.