• Title/Summary/Keyword: State Machine Model

Search Result 444, Processing Time 0.045 seconds

해저지반 굴삭용 워터젯 장비의 시공성능 추정에 관한 기초적 연구 (A Fundamental Study to Estimate Construction Performance of Subsea Waterjet Trenching Machine)

  • 나경원;백동일;황재혁;한성훈;장민석;김재희;조효제
    • 한국항해항만학회지
    • /
    • 제39권6호
    • /
    • pp.539-544
    • /
    • 2015
  • 해양구조물의 가동해역이 대수심으로 이동함에 따라 해저파이프라인 및 해저케이블은 육지보다 열악한 시공 환경에 놓이게 된다. 이때 해저지반상태와 해상조건 등은 작업효율에 영향을 미치게 되며 단시간에 효율적인 시공이 필요하다. 본 논문은 해저지반 굴삭을 위해 ROV(Remotely Operated Vehicle) 트렌쳐에 장착되는 워터젯 굴삭기의 시공성능 추정에 관한 연구이다. 먼저 전산유체해석을 통해 노즐간의 거리와 노즐 분사각도를 고려하여 굴삭효율을 극대화할 수 있는 최적 노즐수량을 선정하였고, 모형실험을 수행하여 굴삭기의 시공성능을 유추할 수 있는 최대 굴삭심도와 최대 굴삭속도를 파악하였다. 이를 토대로 실제 운용중인 워터젯 굴삭장비와 비교분석하여 워터젯 장비의 효율성을 확인하였다.

모바일 및 웨어러블 센서 데이터를 이용한 다양한 식사상황 인식 시스템 (A Context Recognition System for Various Food Intake using Mobile and Wearable Sensor Data)

  • 김기훈;조성배
    • 정보과학회 논문지
    • /
    • 제43권5호
    • /
    • pp.531-540
    • /
    • 2016
  • 최근 모바일 환경의 다양한 센서 정보를 이용한 상황인지 서비스가 활발히 연구되고 있다. 본 논문에서는 모바일 및 웨어러블 센서 데이터를 사용해 다양한 맥락에서 나타날 수 있는 사용자의 식사상황을 효과적으로 인식할 수 있는 확률모델을 제안한다. 식사행위와 관련된 상황들을 체계적으로 모델링하기 위해 행위이론의 4가지 행위 요소 및 육하원칙의 5가지 구성 요소들을 모바일 및 웨어러블의 저수준 센서 데이터로 추론 가능한 범위에 맞게 통합하여 인식모델을 구축하고, 트리구조의 베이지안 네트워크 모델링 방식을 사용하여 인식의 경량화를 시도하였다. 제안하는 시스템의 유용성을 입증하기 위하여 1주일간 다양한 배경의 4명 사용자로부터 식사상황 및 일상생활에 대한 383분의 데이터를 수집하였다. 실험결과 기존의 대표적인 분류기들과 비교하여 상대적으로 우수한 인식률(93.21%)이 도출되는 것을 확인하였다. 또한 실제 시나리오를 통한 내부 분석을 수행하여 인식에 사용되는 각 요소들의 유용성을 검증하였다.

퍼지 추론 기반의 멀티에이전트 강화학습 모델 (Multi-Agent Reinforcement Learning Model based on Fuzzy Inference)

  • 이봉근;정재두;류근호
    • 한국콘텐츠학회논문지
    • /
    • 제9권10호
    • /
    • pp.51-58
    • /
    • 2009
  • 강화학습은 최적의 행동정책을 구하는 최적화 문제로 주어진 환경과의 상호작용을 통해 받는 보상 값을 최대화하는 것이 목표이다. 특히 단일 에이전트에 비해 상태공간과 행동공간이 매우 커지는 다중 에이전트 시스템인 경우 효과적인 강화학습을 위해서는 적절한 행동 선택 전략이 마련되어야 한다. 본 논문에서는 멀티에이전트의 효과적인 행동 선택과 학습의 수렴속도를 개선하기 위하여 퍼지 추론 기반의 멀티에이전트 강화학습 모델을 제안하였다. 멀티 에이전트 강화학습의 대표적인 환경인 로보컵 Keepaway를 테스트 베드로 삼아 다양한 비교 실험을 전개하여 에이전트의 효율적인 행동 선택 전략을 확인하였다. 제안된 퍼지 추론 기반의 멀티에이전트 강화학습모델은 다양한 지능형 멀티 에이전트의 학습에서 행동 선택의 효율성 평가와 로봇축구 시스템의 전략 및 전술에 적용이 가능하다.

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • 대한원격탐사학회지
    • /
    • 제36권1호
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

그리드 단체 위의 디리슐레 분포에서 마르코프 연쇄 몬테 칼로 표집 (MCMC Algorithm for Dirichlet Distribution over Gridded Simplex)

  • 신봉기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권1호
    • /
    • pp.94-99
    • /
    • 2015
  • 비모수 베이스 통계학, 확률적 표집에 기반한 추론 등이 기계학습의 주요 패러다임으로 등장하면서 디리슐레(Dirichlet) 분포는 최근 다양한 그래프 모형 곳곳에 등장하고 있다. 디리슐레 분포는 일변수 감마 분포를 벡터 분포로 확장한 형태의 하나이다. 본 논문에서는 감마 분포를 갖는 임의의 자연수 X를 K개의 자연수의 합으로 임의 분할 할 때 각 부분의 크기 비율을 디리슐레 분포에서 표집하는 방법을 제안한다. 일반적으로 디리슐레 분포는 연속적인 (K-1)-단체(simplex) 위에 정의 되지만 자연수로 분할하는 표본은 자연수라는 조건 때문에 단체 내부의 이산 그리드 점에만 정의된다. 본 논문에서는 단체 위의 그리드 상의 이웃 점들의 확률 분포로부터 마르코프연쇄 몬테 칼로(MCMC) 제안 분포를 정의하고 일련의 표본들의 마르코프 연쇄를 구현하는 알고리듬을 제안한다. 본 방법은 마르코프 모델, HMM 및 준-HMM 등에서 각 상태별 시간 지속 분포를 표현하는데 활용 가능하다. 나아가 최근 제안된 전역-지역(global-local) 상태지속 분포를 동시에 모형화하는 감마-디리슐레 HMM에도 응용가능하다.

Chatbot Design Method Using Hybrid Word Vector Expression Model Based on Real Telemarketing Data

  • Zhang, Jie;Zhang, Jianing;Ma, Shuhao;Yang, Jie;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1400-1418
    • /
    • 2020
  • In the development of commercial promotion, chatbot is known as one of significant skill by application of natural language processing (NLP). Conventional design methods are using bag-of-words model (BOW) alone based on Google database and other online corpus. For one thing, in the bag-of-words model, the vectors are Irrelevant to one another. Even though this method is friendly to discrete features, it is not conducive to the machine to understand continuous statements due to the loss of the connection between words in the encoded word vector. For other thing, existing methods are used to test in state-of-the-art online corpus but it is hard to apply in real applications such as telemarketing data. In this paper, we propose an improved chatbot design way using hybrid bag-of-words model and skip-gram model based on the real telemarketing data. Specifically, we first collect the real data in the telemarketing field and perform data cleaning and data classification on the constructed corpus. Second, the word representation is adopted hybrid bag-of-words model and skip-gram model. The skip-gram model maps synonyms in the vicinity of vector space. The correlation between words is expressed, so the amount of information contained in the word vector is increased, making up for the shortcomings caused by using bag-of-words model alone. Third, we use the term frequency-inverse document frequency (TF-IDF) weighting method to improve the weight of key words, then output the final word expression. At last, the answer is produced using hybrid retrieval model and generate model. The retrieval model can accurately answer questions in the field. The generate model can supplement the question of answering the open domain, in which the answer to the final reply is completed by long-short term memory (LSTM) training and prediction. Experimental results show which the hybrid word vector expression model can improve the accuracy of the response and the whole system can communicate with humans.

Concept Drift에 의한 ML 모델 성능 변화의 정량적 추정 방법 (Quantitative Estimation Method for ML Model Performance Change, Due to Concept Drift)

  • 안순홍;이훈석;김승훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권6호
    • /
    • pp.259-266
    • /
    • 2023
  • 기계학습을 통해 학습된 모델은 업무 활용 시 그 성능을 실측하기 매우 어렵다. 때문에 운영 부서에서는 모델의 성능을 효과적으로 관리하지 못한다. 이로 인해 모델의 상태를 판단하기 위한 Concept drift 탐지 방법이 다양하게 연구되고 있다. 운영 부서에서는 운영 중인 모델의 성능을 정량적으로 관리하려고 한다. 그러나 Concept drift는 모델 상태를 데이터 관계적으로 판단 할 뿐, 모델의 정량적 성능 수치를 추정하지는 못한다. 본 연구에서는 Concept drift의 통계량을 통해 정량적으로 precision 값을 추정하는 성능 예측 모델(PPM, Performance prediction model)을 제안한다. 제안 모델의 Algorithm 1에서는, 학습데이터에서 복원 추출한 샘플링 데이터에 인위적인 drift를 유도하고 이때의 precision을 측정하여 drift와 precision의 데이터 셋을 만들어 학습한다. Algorithm 2에서는 테스트 데이터를 통해 실제 precision과 예측 precision의 차이를 측정하여 성능 예측 모델의 오차를 보정 한다. 현실 비즈니스에서 사용될 수 있는 대출 심사 모델과 신용카드 오사용 탐지 모델에 PPM을 적용하여 성능 예측의 유효성을 확인했다.

MO 理論에 依한 反應性의 決定 (第14報). Diels-Alder 反應의 配向性에 미치는 酸觸媒의 效果 (Determination of Reactivities by MO Theory (XIV). Effect of Acid Catalysis on Regioselectivity of Diels-Alder Reactions)

  • 이익춘;류근배;전용구
    • 대한화학회지
    • /
    • 제23권5호
    • /
    • pp.286-295
    • /
    • 1979
  • 非對稱으로 置環된 diene과 dienophile 間의 反應에서 配向性에 미치는 산촉매의 효과를 豫期하기 위해서 루이스酸과 錯物을 形成한 dienophile의 理論的모델에 FMO 理論을 적용하여CNDO/2 방법으로 고찰하였다. 電子的性質이 類似한 치환기로 치환된 diene, dienophile의 반응(즉, 電子不足 diene과 電子不足 dienophile의 반응)에서 일어나는 半極性 고리化반응을 제외한 주어진 대부분의 반응에 대해서, CNDO/2방법이 실험적인 配向性과 一致하는 좋은 결과를 주었다. 또한 二次軌道相互作用이 非對稱으로 치환된 diene과 dienophile의 Diels-Alder 반응의 배향성에 중요한 역할을 했다는 사실을 보여주었다. Anh의 방법이 다른 방법보다 수식적으로 간단할지라도, 非對稱전이상태를 강조한 Anh의 방법이 配向性 결정에 좋은 결과를 주었다.

  • PDF

Deep Learning 기반의 DGA 개발에 대한 연구 (A Study on the Development of DGA based on Deep Learning)

  • 박재균;최은수;김병준;장범
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.18-28
    • /
    • 2017
  • Recently, there are many companies that use systems based on artificial intelligence. The accuracy of artificial intelligence depends on the amount of learning data and the appropriate algorithm. However, it is not easy to obtain learning data with a large number of entity. Less data set have large generalization errors due to overfitting. In order to minimize this generalization error, this study proposed DGA which can expect relatively high accuracy even though data with a less data set is applied to machine learning based genetic algorithm to deep learning based dropout. The idea of this paper is to determine the active state of the nodes. Using Gradient about loss function, A new fitness function is defined. Proposed Algorithm DGA is supplementing stochastic inconsistency about Dropout. Also DGA solved problem by the complexity of the fitness function and expression range of the model about Genetic Algorithm As a result of experiments using MNIST data proposed algorithm accuracy is 75.3%. Using only Dropout algorithm accuracy is 41.4%. It is shown that DGA is better than using only dropout.

백상지 공정 폐쇄화에 따른 백수 내 산화전분의 축적 현상에 관한 연구 ( 제 3 보 ) -백수사용량과 파지첨가량 변화에 따른 공정의 비정상상태 변화 - (A Study on the Accumulation Phenomena of Oxidized Starch in White Water of Closed Fine Papermaking Process (Part 3) -Effect of white water and broke use ratios on the unsteady state of papermaking process-)

  • 안현견;이학래
    • 펄프종이기술
    • /
    • 제38권2호
    • /
    • pp.1-8
    • /
    • 2006
  • In this study a process simulation method was used to analyze the accumulation phenomena of anionic starch in the process white water as the closure level of a fine paper making process is increased. A pilot paper machine was used as a model process. Dynamic simulations of the influence of white water usage ratio and uncoated broke addition ratio on the variation of process variable was monitored as a function of time. Results from the dynamic simulations showed that the volume of reservoirs affected the dynamic behavior of the process. The dynamic behavior of flow rate and dissolved starch concentration in process units were different from each other. The speed of the change of dissolved starch concentration in process units was depend on the starting point of the change of dissolved starch concentration, the length of circulation loop, and the volume of reservoirs.