해양구조물의 가동해역이 대수심으로 이동함에 따라 해저파이프라인 및 해저케이블은 육지보다 열악한 시공 환경에 놓이게 된다. 이때 해저지반상태와 해상조건 등은 작업효율에 영향을 미치게 되며 단시간에 효율적인 시공이 필요하다. 본 논문은 해저지반 굴삭을 위해 ROV(Remotely Operated Vehicle) 트렌쳐에 장착되는 워터젯 굴삭기의 시공성능 추정에 관한 연구이다. 먼저 전산유체해석을 통해 노즐간의 거리와 노즐 분사각도를 고려하여 굴삭효율을 극대화할 수 있는 최적 노즐수량을 선정하였고, 모형실험을 수행하여 굴삭기의 시공성능을 유추할 수 있는 최대 굴삭심도와 최대 굴삭속도를 파악하였다. 이를 토대로 실제 운용중인 워터젯 굴삭장비와 비교분석하여 워터젯 장비의 효율성을 확인하였다.
최근 모바일 환경의 다양한 센서 정보를 이용한 상황인지 서비스가 활발히 연구되고 있다. 본 논문에서는 모바일 및 웨어러블 센서 데이터를 사용해 다양한 맥락에서 나타날 수 있는 사용자의 식사상황을 효과적으로 인식할 수 있는 확률모델을 제안한다. 식사행위와 관련된 상황들을 체계적으로 모델링하기 위해 행위이론의 4가지 행위 요소 및 육하원칙의 5가지 구성 요소들을 모바일 및 웨어러블의 저수준 센서 데이터로 추론 가능한 범위에 맞게 통합하여 인식모델을 구축하고, 트리구조의 베이지안 네트워크 모델링 방식을 사용하여 인식의 경량화를 시도하였다. 제안하는 시스템의 유용성을 입증하기 위하여 1주일간 다양한 배경의 4명 사용자로부터 식사상황 및 일상생활에 대한 383분의 데이터를 수집하였다. 실험결과 기존의 대표적인 분류기들과 비교하여 상대적으로 우수한 인식률(93.21%)이 도출되는 것을 확인하였다. 또한 실제 시나리오를 통한 내부 분석을 수행하여 인식에 사용되는 각 요소들의 유용성을 검증하였다.
강화학습은 최적의 행동정책을 구하는 최적화 문제로 주어진 환경과의 상호작용을 통해 받는 보상 값을 최대화하는 것이 목표이다. 특히 단일 에이전트에 비해 상태공간과 행동공간이 매우 커지는 다중 에이전트 시스템인 경우 효과적인 강화학습을 위해서는 적절한 행동 선택 전략이 마련되어야 한다. 본 논문에서는 멀티에이전트의 효과적인 행동 선택과 학습의 수렴속도를 개선하기 위하여 퍼지 추론 기반의 멀티에이전트 강화학습 모델을 제안하였다. 멀티 에이전트 강화학습의 대표적인 환경인 로보컵 Keepaway를 테스트 베드로 삼아 다양한 비교 실험을 전개하여 에이전트의 효율적인 행동 선택 전략을 확인하였다. 제안된 퍼지 추론 기반의 멀티에이전트 강화학습모델은 다양한 지능형 멀티 에이전트의 학습에서 행동 선택의 효율성 평가와 로봇축구 시스템의 전략 및 전술에 적용이 가능하다.
Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.
비모수 베이스 통계학, 확률적 표집에 기반한 추론 등이 기계학습의 주요 패러다임으로 등장하면서 디리슐레(Dirichlet) 분포는 최근 다양한 그래프 모형 곳곳에 등장하고 있다. 디리슐레 분포는 일변수 감마 분포를 벡터 분포로 확장한 형태의 하나이다. 본 논문에서는 감마 분포를 갖는 임의의 자연수 X를 K개의 자연수의 합으로 임의 분할 할 때 각 부분의 크기 비율을 디리슐레 분포에서 표집하는 방법을 제안한다. 일반적으로 디리슐레 분포는 연속적인 (K-1)-단체(simplex) 위에 정의 되지만 자연수로 분할하는 표본은 자연수라는 조건 때문에 단체 내부의 이산 그리드 점에만 정의된다. 본 논문에서는 단체 위의 그리드 상의 이웃 점들의 확률 분포로부터 마르코프연쇄 몬테 칼로(MCMC) 제안 분포를 정의하고 일련의 표본들의 마르코프 연쇄를 구현하는 알고리듬을 제안한다. 본 방법은 마르코프 모델, HMM 및 준-HMM 등에서 각 상태별 시간 지속 분포를 표현하는데 활용 가능하다. 나아가 최근 제안된 전역-지역(global-local) 상태지속 분포를 동시에 모형화하는 감마-디리슐레 HMM에도 응용가능하다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권4호
/
pp.1400-1418
/
2020
In the development of commercial promotion, chatbot is known as one of significant skill by application of natural language processing (NLP). Conventional design methods are using bag-of-words model (BOW) alone based on Google database and other online corpus. For one thing, in the bag-of-words model, the vectors are Irrelevant to one another. Even though this method is friendly to discrete features, it is not conducive to the machine to understand continuous statements due to the loss of the connection between words in the encoded word vector. For other thing, existing methods are used to test in state-of-the-art online corpus but it is hard to apply in real applications such as telemarketing data. In this paper, we propose an improved chatbot design way using hybrid bag-of-words model and skip-gram model based on the real telemarketing data. Specifically, we first collect the real data in the telemarketing field and perform data cleaning and data classification on the constructed corpus. Second, the word representation is adopted hybrid bag-of-words model and skip-gram model. The skip-gram model maps synonyms in the vicinity of vector space. The correlation between words is expressed, so the amount of information contained in the word vector is increased, making up for the shortcomings caused by using bag-of-words model alone. Third, we use the term frequency-inverse document frequency (TF-IDF) weighting method to improve the weight of key words, then output the final word expression. At last, the answer is produced using hybrid retrieval model and generate model. The retrieval model can accurately answer questions in the field. The generate model can supplement the question of answering the open domain, in which the answer to the final reply is completed by long-short term memory (LSTM) training and prediction. Experimental results show which the hybrid word vector expression model can improve the accuracy of the response and the whole system can communicate with humans.
기계학습을 통해 학습된 모델은 업무 활용 시 그 성능을 실측하기 매우 어렵다. 때문에 운영 부서에서는 모델의 성능을 효과적으로 관리하지 못한다. 이로 인해 모델의 상태를 판단하기 위한 Concept drift 탐지 방법이 다양하게 연구되고 있다. 운영 부서에서는 운영 중인 모델의 성능을 정량적으로 관리하려고 한다. 그러나 Concept drift는 모델 상태를 데이터 관계적으로 판단 할 뿐, 모델의 정량적 성능 수치를 추정하지는 못한다. 본 연구에서는 Concept drift의 통계량을 통해 정량적으로 precision 값을 추정하는 성능 예측 모델(PPM, Performance prediction model)을 제안한다. 제안 모델의 Algorithm 1에서는, 학습데이터에서 복원 추출한 샘플링 데이터에 인위적인 drift를 유도하고 이때의 precision을 측정하여 drift와 precision의 데이터 셋을 만들어 학습한다. Algorithm 2에서는 테스트 데이터를 통해 실제 precision과 예측 precision의 차이를 측정하여 성능 예측 모델의 오차를 보정 한다. 현실 비즈니스에서 사용될 수 있는 대출 심사 모델과 신용카드 오사용 탐지 모델에 PPM을 적용하여 성능 예측의 유효성을 확인했다.
非對稱으로 置環된 diene과 dienophile 間의 反應에서 配向性에 미치는 산촉매의 효과를 豫期하기 위해서 루이스酸과 錯物을 形成한 dienophile의 理論的모델에 FMO 理論을 적용하여CNDO/2 방법으로 고찰하였다. 電子的性質이 類似한 치환기로 치환된 diene, dienophile의 반응(즉, 電子不足 diene과 電子不足 dienophile의 반응)에서 일어나는 半極性 고리化반응을 제외한 주어진 대부분의 반응에 대해서, CNDO/2방법이 실험적인 配向性과 一致하는 좋은 결과를 주었다. 또한 二次軌道相互作用이 非對稱으로 치환된 diene과 dienophile의 Diels-Alder 반응의 배향성에 중요한 역할을 했다는 사실을 보여주었다. Anh의 방법이 다른 방법보다 수식적으로 간단할지라도, 非對稱전이상태를 강조한 Anh의 방법이 配向性 결정에 좋은 결과를 주었다.
Recently, there are many companies that use systems based on artificial intelligence. The accuracy of artificial intelligence depends on the amount of learning data and the appropriate algorithm. However, it is not easy to obtain learning data with a large number of entity. Less data set have large generalization errors due to overfitting. In order to minimize this generalization error, this study proposed DGA which can expect relatively high accuracy even though data with a less data set is applied to machine learning based genetic algorithm to deep learning based dropout. The idea of this paper is to determine the active state of the nodes. Using Gradient about loss function, A new fitness function is defined. Proposed Algorithm DGA is supplementing stochastic inconsistency about Dropout. Also DGA solved problem by the complexity of the fitness function and expression range of the model about Genetic Algorithm As a result of experiments using MNIST data proposed algorithm accuracy is 75.3%. Using only Dropout algorithm accuracy is 41.4%. It is shown that DGA is better than using only dropout.
In this study a process simulation method was used to analyze the accumulation phenomena of anionic starch in the process white water as the closure level of a fine paper making process is increased. A pilot paper machine was used as a model process. Dynamic simulations of the influence of white water usage ratio and uncoated broke addition ratio on the variation of process variable was monitored as a function of time. Results from the dynamic simulations showed that the volume of reservoirs affected the dynamic behavior of the process. The dynamic behavior of flow rate and dissolved starch concentration in process units were different from each other. The speed of the change of dissolved starch concentration in process units was depend on the starting point of the change of dissolved starch concentration, the length of circulation loop, and the volume of reservoirs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.