• Title/Summary/Keyword: State Error Energy

Search Result 155, Processing Time 0.026 seconds

Double Vector Based Model Predictive Torque Control for SPMSM Drives with Improved Steady-State Performance

  • Zhang, Xiaoguang;He, Yikang;Hou, Benshuai
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1398-1408
    • /
    • 2018
  • In order to further improve the steady-state control performance of model predictive torque control (MPTC), a double-vector-based model predictive torque control without a weighting factor is proposed in this paper. The extended voltage vectors synthesized by two basic voltage vectors are used to increase the number of feasible voltage vectors. Therefore, the control precision of the torque and the stator flux along with the steady-state performance can be improved. To avoid testing all of the feasible voltage vectors, the solution of deadbeat torque control is calculated to predict the reference voltage vector. Thus, the candidate voltage vectors, which need to be evaluated by a cost function, can be reduced based on the sector position of the predicted reference voltage vector. Furthermore, a cost function, which only includes a reference voltage tracking error, is designed to eliminate the weighting factor. Moreover, two voltage vectors are applied during one control period, and their durations are calculated based on the principle of reference voltage tracking error minimization. Finally, the proposed method is tested by simulations and experiments.

A Novel Battery State of Health Estimation Method Based on Outlier Detection Algorithm

  • Piao, Chang-hao;Hu, Zi-hao;Su, Ling;Zhao, Jian-fei
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1802-1811
    • /
    • 2016
  • A novel battery SOH estimation algorithm based on outlier detection has been presented. The Battery state of health (SOH) is one of the most important parameters that describes the usability state of the power battery system. Firstly, a battery system model with lifetime fading characteristic was established, and the battery characteristic parameters were acquired from the lifetime fading process. Then, the outlier detection method based on angular distribution was used to identify the outliers among the battery behaviors. Lastly, the functional relationship between battery SOH and the outlier distribution was obtained by polynomial fitting method. The experimental results show that the algorithm can identify the outliers accurately, and the absolute error between the SOH estimation value and true value is less than 3%.

The Study on Autonomous State Estimator for Smart Grid (스마트그리드를 위한 자율형 상태관측기 연구)

  • Park, Jong-Chan;Lee, Se-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • In this study, authors have proposed the autonomous state estimation which has been composed with IEC61850, GPS time synchronization and objective model design concept. The proposed method is able to supervise/correct measurement and communication error from SCADA. The major advantages of the proposed autonomous state estimation are that it is possible to evaluate integrity of data measured and transferred from SCADA, to reduce human intervention and to expense national-size applications such as EMS (Energy Management System), WAMS (Wide Area Monitoring System) or WAPS (Wide Area Protection System). This study addresses the issues related to the operation of the smart grid and proposes a new automated approach to achieve this goal. Through applying the proposed system to IEEE 14-bus test electric system, we prove the possibility of the proposed idea.

A dryout mechanism model for rectangular narrow channels at high pressure conditions

  • Song, Gongle;Liang, Yu;Sun, Rulei;Zhang, Dalin;Deng, Jian;Su, G.H.;Tian, Wenxi;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2196-2203
    • /
    • 2020
  • A dryout mechanism model for rectangular narrow channels at high pressure conditions is developed by assuming that the Kelvin-Helmholtz instability triggered the occurrence of dryout. This model combines the advantages of theoretical analysis and empirical correlation. The unknown coefficients in the theoretical derivation are supported by the experimental data. Meanwhile, the decisive restriction of the experimental conditions on the applicability of the empirical correlation is avoided. The expression of vapor phase velocity at the time of dryout is derived, and the empirical correlation of liquid film thickness is introduced. Since the CHF value obtained from the liquid film thickness should be the same as the value obtained from the Kelvin-Helmholtz critical stability under the same condition, the convergent CHF value is obtained by iteratively calculating. Comparing with the experimental data under the pressure of 6.89-13.79 MPa, the average error of the model is -15.4% with the 95% confidence interval [-20.5%, -10.4%]. And the pressure has a decisive influence on the prediction accuracy of this model. Compared with the existing dryout code, the calculation speed of this model is faster, and the calculation accuracy is improved. This model, with great portability, could be applied to different objects and working conditions by changing the expression of the vapor phase velocity when the dryout phenomenon is triggered and the calculation formula of the liquid film.

Active damage localization technique based on energy propagation of Lamb waves

  • Wang, Lei;Yuan, F.G.
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.201-217
    • /
    • 2007
  • An active damage detection technique is introduced to locate damage in an isotropic plate using Lamb waves. This technique uses a time-domain energy model of Lamb waves in plates that the wave amplitude inversely decays with the propagation distance along a ray direction. Accordingly the damage localization is formulated as a least-squares problem to minimize an error function between the model and the measured data. An active sensing system with integrated actuators/sensors is controlled to excite/receive $A_0$ mode of Lamb waves in the plate. Scattered wave signals from the damage can be obtained by subtracting the baseline signal of the undamaged plate from the recorded signal of the damaged plate. In the experimental study, after collecting the scattered wave signals, a discrete wavelet transform (DWT) is employed to extract the first scattered wave pack from the damage, then an iterative method is derived to solve the least-squares problem for locating the damage. Since this method does not rely on time-of-flight but wave energy measurement, it is more robust, reliable, and noise-tolerant. Both numerical and experimental examples are performed to verify the efficiency and accuracy of the method, and the results demonstrate that the estimated damage position stably converges to the targeted damage.

Optimal Energy Costs based on Improving Retort Process In Food Canning Manufacturing

  • Saredchapan, Supawut;Chaikla, Amphawan;Masuchun, Ruedee;Trisuwannawat, Thanit;Julsereewong, Prasit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2309-2312
    • /
    • 2003
  • This paper presents the minimization of the energy costs based on energy saving for industrial retort process of canned food. The approved proposed method is related the optimal steam or hot water flow control to achieve desired temperature of retort process. The smooth response and zero steady state error can be also achieved. The performances of the proposed control technique were observed using a small tuna canned food plant in Thailand as an illustrative example. The experimental results are given to support the saving in energy costs and some benefits of the proposed technique.

  • PDF

An integral square error-based model predictive controller for two area load frequency control

  • Kassem, Ahmed M.;Sayed, Khairy;El-Zohri, Emad H.;Ali, Hossam H.
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.79-90
    • /
    • 2017
  • The main objective of load frequency control (LFC) is to keep the frequency value at nominal value and force deviation of the frequency to zero in case of load change. This paper suggests LFC by using a model predictive control (MPC), based on Integral Square Error (ISE) method designed to optimize the damping of oscillations in a two-area power system. The MPC is designed and simulated with a model system in state space, for robust performance in the system response. The proposed MPC is tuned by ISE to achieve superior efficiency. Moreover, its performance has been assessed and compared with the PI and PID conventional controllers. The settling time and overshoot with MPC are extremely minimized as compared with conventional controllers.

Prediction of the Stress-Strain Curve of Materials under Uniaxial Compression by Using LSTM Recurrent Neural Network (LSTM 순환 신경망을 이용한 재료의 단축하중 하에서의 응력-변형률 곡선 예측 연구)

  • Byun, Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2018
  • LSTM (Long Short-Term Memory) algorithm which is a kind of recurrent neural network was used to establish a model to predict the stress-strain curve of an material under uniaxial compression. The model was established from the stress-strain data from uniaxial compression tests of silica-gypsum specimens. After training the model, it can predict the behavior of the material up to the failure state by using an early stage of stress-strain curve whose stress is very low. Because the LSTM neural network predict a value by using the previous state of data and proceed forward step by step, a higher error was found at the prediction of higher stress state due to the accumulation of error. However, this model generally predict the stress-strain curve with high accuracy. The accuracy of both LSTM and tangential prediction models increased with increased length of input data, while a difference in performance between them decreased as the amount of input data increased. LSTM model showed relatively superior performance to the tangential prediction when only few input data was given, which enhanced the necessity for application of the model.

Effect of Temperature and Humidity on the Performance Factors of a 15-W Proton Exchange Membrane Fuel Cell

  • Dien Minh Vu;Binh Hoa Pham;Duc Pham Xuan;Dung Nguyen Dinh;Vinh Nguyen Duy
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.241-246
    • /
    • 2023
  • Fuel cells are one of the renewable energy sources that have sparked a lot of scientific attention for solving problems related to the energy crisis and environmental pollution. One of the most crucial subjects concerning the utilization of fuel cells is modeling. Therefore, an analytical steady-state and dynamic fuel cell model was described in this study. The parameter for the identification process was investigated, and the MATLAB/Simulink implementation was demonstrated. A 15-W proton exchange membrane fuel cell was used to apply the suggested modeling methodology. Comparing experimental and simulation findings indicated that the model error was constrained to 3%. This study showed that temperature and humidity affect fuel cell performance.

Design of an RCGA-based Linear Active Disturbance Rejection Controller for Ship Heading Control

  • Ahn, Jong-Kap;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.44 no.5
    • /
    • pp.423-429
    • /
    • 2020
  • A ship's automatic steering system is the basis for addressing control difficulties related to course-changing and course-keeping during navigation through heading angle control, and is a link in realizing unmanned and autonomous ships. This study proposes a robust RCGA-based linear active disturbance rejection controller (LADRC) design method considering environmental disturbances, measurement noise, and model uncertainties in designing a ship heading controller for use when the ship is sailing. The LADRC consisted of a transient profile, a linear extended state observer, and a PD controller. The control gains in the LADRC with the linear extended state observer were adjusted by RCGAs to minimize the integral of the time-weighted absolute error (ITAE), which is an evaluation function of the control system. The proposed method was applied to ship heading control, and its effectiveness was validated by comparing the propulsive energy loss between the proposed method and a conventional linear PD controller. The simulation results showed that the proposed method had the advantages of lower propulsive energy loss, more robustness, and higher tracking precision than the conventional linear PD controller.