• Title/Summary/Keyword: Stat5

Search Result 229, Processing Time 0.024 seconds

Synergistic Effects of Bee Venom and Natural Killer Cells on B16F10 Melanoma Cell Growth Inhibition through IL-4-mediated Apoptosis

  • Sin, Dae Chul;Kang, Mi Suk;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Objectives : We investigated the synergistic effects of bee venom (BV) and natural killer (NK) cells on B16F10 melanoma cell apoptosis mediated by IL-4. Methods : We performed a cell viability assay to determine whether BV can enhance the inhibitory effect of NK-92MI cells on the growth of B16F10 melanoma cells, and western blot analysis to detect changes in the expression of IL-4, $IL-4R{\alpha}$, and other apoptosis-related proteins. EMSA was performed to observe the activity of STAT6. To confirm that the inhibitory effect of BV and NK cells was mediated by IL-4, the above tests were repeated after IL-4 silencing by siRNA (50 nM). Results : B16F10 melanoma cells co-cultured with NK-92MI cells and simultaneously treated by BV ($5{\mu}g/ml$) showed a higher degree of proliferation inhibition than when treated by BV ($5{\mu}g/ml$) alone or co-cultured with NK-92MI cells alone. Expression of IL-4, $IL-4R{\alpha}$, and that of other pro-apoptotic proteins was also enhanced after co-culture with NK-92MI cells and simultaneous treatment with BV ($5{\mu}g/ml$). Furthermore, the expression of anti-apoptotic bcl-2 decreased, and the activity of STAT6, as well as the expression of STAT6 and p-STAT6 were enhanced. IL-4 silencing siRNA (50 nM) in B16F10 cells, the effects of BV treatment and NK-92MI co-culture were reversed. Conclusion : These results suggest that BV could be an effective alternative therapy for malignant melanoma by enhancing the cytotoxic and apoptotic effect of NK cells through an IL-4-mediated pathway.

Dieckol, a Component of Ecklonia cava, Suppresses the Production of MDC/CCL22 via Down-Regulating STAT1 Pathway in Interferon-γ Stimulated HaCaT Human Keratinocytes

  • Kang, Na-Jin;Koo, Dong-Hwan;Kang, Gyeoung-Jin;Han, Sang-Chul;Lee, Bang-Won;Koh, Young-Sang;Hyun, Jin-Won;Lee, Nam-Ho;Ko, Mi-Hee;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.238-244
    • /
    • 2015
  • Macrophage-derived chemokine, C-C motif chemokine 22 (MDC/CCL22), is one of the inflammatory chemokines that controls the movement of monocytes, monocyte-derived dendritic cells, and natural killer cells. Serum and skin MDC/CCL22 levels are elevated in atopic dermatitis, which suggests that the chemokines produced from keratinocytes are responsible for attracting inflammatory lymphocytes to the skin. A major signaling pathway in the interferon-${\gamma}$ (IFN-${\gamma}$)-stimulated inflammation response involves the signal transducers and activators of transcription 1 (STAT1). In the present study, we investigated the anti-inflammatory effect of dieckol and its possible action mechanisms in the category of skin inflammation including atopic dermatitis. Dieckol inhibited MDC/CCL22 production induced by IFN-${\gamma}$ (10 ng/mL) in a dose dependent manner. Dieckol (5 and $10{\mu}M$) suppressed the phosphorylation and the nuclear translocation of STAT1. These results suggest that dieckol exhibits anti-inflammatory effect via the down-regulation of STAT1 activation.

Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner

  • Yun, SeungPil;Yun, Chul Won;Lee, Jun Hee;Kim, SangMin;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.464-473
    • /
    • 2018
  • Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or $H_2O_2$ exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.

Lactosylceramide Mediates the Expression of Adhesion Molecules in TNF-${\alpha}$ and IFN ${\gamma}$-stimulated Primary Cultured Astrocytes

  • Lee, Jin-Koo;Kim, Jin-Kyu;Park, Soo-Hyun;Sim, Yun-Beom;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.251-258
    • /
    • 2011
  • Here we have investigated how lactosylceramide (LacCer) modulates gene expression of adhesion molecules in TNF-${\alpha}$ and IFN ${\gamma}$ (CM)-stimulated astrocytes. We have observed that stimulation of astrocytes with CM increased the gene expression of ICAM-1 and VCAM-1. D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and N-butyldeoxynojirimycin (NBDNJ), inhibitors of glucosylceramide synthase (GLS) and LacCer synthase (galactosyltransferase, GalT-2), inhibited the gene expression of ICAM-1 and VCAM-1 and activation of their gene promoter induced by CM, which were reversed by exogenously supplied LacCer. Silencing of GalT-2 gene using its antisense oligonucleotides also attenuated CM-induced ICAM-1 and VCAM-1 expression, which were reversed by LacCer. PDMP treatment and silencing of GalT-2 gene significantly reduced CM-induced luciferase activities in NF-${\kappa}B$, AP-1, GAS, and STAT-3 luciferase vectors-transfected cells. In addition, LacCer reversed the inhibition of NF-${\kappa}B$ and STAT-1 luciferase activities by PDMP. Taken together, our results suggest that LacCer may play a crucial role in the expression of ICAM-1 and VCAM-1 via modulating transcription factors, such as NF-${\kappa}B$, AP-1, STAT-1, and STAT-3 in CM-stimulated astrocytes.

An Analog of the Antimicrobial Peptide CopA5 Inhibits Lipopolysaccharide-Induced Macrophage Activation

  • Yoon, I Na;Hong, Ji;Zhang, Peng;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.350-356
    • /
    • 2017
  • We previously reported that the CopA3 peptide (LLCIALRKK, ${\small{D}}-form$) originally isolated from the Korean dung beetle has antimicrobial and immunosuppressive effects. However, the high cost of producing the synthetic peptide, especially the ${\small{D}}-form$, has limited the development of CopA3 for therapeutic purposes. Here, we investigated whether the CopA3 deletion derivative, CopA5, which is composed of only five amino acids (LLCIA) and has the ${\small{L}}-form$ structure, could inhibit the lipopolysaccharide (LPS)-induced activation of macrophages. Peritoneal exudate macrophages (PEM) were isolated from mice and exposed to LPS in the presence or absence of CopA5, and biomarkers of macrophage activation were measured. Our results revealed that LPS-induced nitric oxide (NO) production, tumor necrosis factor $(TNF)-{\alpha}$ secretion, and phagocytic activity of PEM were significantly inhibited by CopA5 treatment. Similar to CopA3, the structurally modified CopA5 peptide had no cell toxicity (as assessed by measurement of cell viability loss and apoptosis) in PEM. Moreover, the LPS-induced upregulation of the activating phosphorylation of signal transducer and activator of transcription 1 (STAT1) was markedly inhibited by CopA5 treatment. These results suggest that, similar to CopA3, CopA5 inhibits macrophage activation by inhibiting STAT1 phosphorylation and blocking the release of NO and $TNF-{\alpha}$. CopA5 may therefore prove therapeutically useful in the realm of immune suppression.

A case of Hyper-IgE syndrome with a mutation of the STAT3 gene (STAT3유전자 돌연변이 검사로 확진된 고면역글로불린E 증후군 1례)

  • Kang, Ji-Man;Suh, Jung-Min;Kim, Ji-Hyun;Kim, Hee-Jin;Kim, Yae-Jean;Lee, Hun-Seok;Shin, Young-Kee;Ahn, Kang-Mo;Lee, Sang-Il
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.4
    • /
    • pp.592-597
    • /
    • 2010
  • Hyperimmunoglobulin E syndrome (HIES) is a rare immunodeficiency disease which is characterized by high serum IgE levels, eczema, and recurrent infections. Herein we present the case of a patient with HIES associated with STAT3 gene ($stat3$) mutation. A 16 year-old girl was admitted to our hospital due to hemoptysis caused by pneumonia with bronchiectasis. She had a history of recurrent skin and respiratory tract infections, such as pneumonia caused by MRSA (methicillin-resistant $Staphylococcus$ $aureus$) and $Pseudomonas$ $aeruginosa$. On physical examination, a broad round shaped nose, oral thrush, and chronic eczematous skin rash over her whole body were found. Laboratory data showed an elevated eosinophil count ($750/{\mu}L$) and total IgE level (5,001 U/mL). The patient's National Institutes of Health (NIH) score for HIES was 44. Direct sequencing of the STAT3 gene revealed that the patient was heterozygous for a missense mutation in the DNA binding domain of the STAT3 protein (c.1144C>T, p. Arg382Trp). HIES should be suspected in patients with recurrent infections and can be confirmed by clinical scoring and genetic analysis.

High fat diet-induced obesity leads to proinflammatory response associated with higher expression of NOD2 protein

  • Kim, Min-Soo;Choi, Myung-Sook;Han, Sung-Nim
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.219-223
    • /
    • 2011
  • Obesity has been reported to be associated with low grade inflammatory status. In this study, we investigated the inflammatory response as well as associated signaling molecules in immune cells from diet-induced obese mice. Four-week-old C57BL mice were fed diets containing 5% fat (control) or 20% fat and 1% cholesterol (HFD) for 24 weeks. Splenocytes ($1{\times}10^7$ cells) were stimulated with $10\;{\mu}g/mL$ of lipopolysaccharide (LPS) for 6 or 24 hrs. Production of interleukin (IL)-$1{\beta}$, IL-6, and TNF-${\alpha}$ as well as protein expression levels of nucleotide-binding oligomerization domain (NOD)2, signal transducer and activator of transcription (STAT)3, and pSTAT3 were determined. Mice fed HFD gained significantly more body weight compared to mice fed control diet ($28.2{\pm}0.6$ g in HFD and $15.4{\pm}0.8$ g in control). After stimulation with LPS for 6 hrs, production of IL-$1{\beta}$ was significantly higher (P=0.001) and production of tumor necrosis factor (TNF)-${\alpha}$ tended to be higher (P < 0.064) in the HFD group. After 24 hrs of LPS stimulation, splenocytes from the HFD group produced significantly higher levels of IL-6 ($10.02{\pm}0.66$ ng/mL in HFD and $7.33{\pm}0.56$ ng/mL in control, P=0.005) and IL-$1{\beta}$ ($121.34{\pm}12.72$ pg/mL in HFD and $49.74{\pm}6.58$ pg/mL in control, P < 0.001). There were no significant differences in the expression levels of STAT3 and pSTAT3 between the HFD and the control groups. However, the expression level of NOD2 protein as determined by Western blot analysis was 60% higher in the HFD group compared with the control group. NOD2 contributes to the induction of inflammation by activation of nuclear factor ${\kappa}B$. These findings suggest that diet-induced obesity is associated with increased inflammatory response of immune cells, and higher expression of NOD2 may contribute to these changes.

Inhibitory Effect of Snake Venom on Colon Cancer Cell Growth Through Induction of Death Receptor Dependent Apoptosis (사독(蛇毒)이 세포자멸사와 관계있는 Death Receptor를 통한 인간 대장암 세포 성장억제에 미치는 영향)

  • Oh, Myung-Jin;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.29 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • 목적 : 이 연구는 $Vipera$ $lebetina$ $turanica$ 사독(蛇毒)이 인간 대장암 세포주인 HCT116 세포에서 세포주기진행, death receptor 의존적 세포자멸사 경로 관련단백질 발현 및 NK-${\kappa}B$와 STAT3 활성에 미치는 영향을 규명함으로써 대장암 세포 성장에 대한 억제와 그 기전에 대하여 살펴보고자 하였다. 방법 : 사독을 처리한 후 HCT116의 세포주기를 분석하기 위해서 FACS analysis를 시행하였고, apoptosis 평가에는 TUNEL assay를 시행하였으며 death receptor 의존적 세포자멸사 경로 관련단백질 및 NF-${\kappa}B$와 STAT3 활성 변동 관찰에는 RT-PCR 및 western blot analysis를 시행하였다. 결과 : 1. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 농도 의존적으로 HCT116 대장암 세포활성의 억제가 나타났다. 2. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 농도의존적으로 세포자멸사 활성세포의 증가가 나타났고, SVT $1{\mu}g/m{\ell}$에서는 60-70%의 대장암세포 억제 효과가 나타났다. 3. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 약한 G1 arrest와 강한 G2/M arrest가 나타났고, G0/G1 또는 G2/M 관련 cyclin D, E 및 B1의 증가가 나타났다. 4. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 death receptor4, 5의 발현증가와 그에 따른 세포자멸사 촉진 Bax, PARP, caspase-3, -8, -9 발현 증가 및 세포자멸사 억제의 Bcl-2의 발현 감소 등이 나타났다. 6. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 NF-${\kappa}B$와 STAT3의 활성변동은 관찰되지 않았다. 결론 : 이상의 연구에서 사독은 death receptor 의존적인 세포자멸사를 촉진하여 대장암의 화학치료 내성을 극복할 수 있는 하나의 대안이 될 것으로 생각되지만 보다 심화된 연구가 필요할 것으로 사료된다.

Inhibitory Effect of Dihydroartemisinin, An Active Ingredient of Artemisia annua, on Lipid Accumulation in Differentiating 3T3-L1 Preadipocytes

  • Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: Artemisinin and its derivatives extracted from Artemisia annua, a Chinese herbal medicine, have variable biological effects due to structural differences. Up to date, the anti-obesity effect of dihydroartemisinin (DHA), a derivative of artemisinin, is unknown. The purpose of this study was to investigate the anti-adipogenic and lipolytic effects of DHA on 3T3-L1 preadipocytes. Methods: Oil Red O staining and AdipoRed assay were used to measure lipid accumulation and triglyceride (TG) content in 3T3-L1 cells, respectively. Cell count analysis was used to determine the cytotoxicity of 3T3-L1 cells. Western blot and real-time reverse transcription polymerase chain reaction analyses were used to analyze the expression of protein and mRNA in 3T3-L1 cells, respectively. Results: DHA at 5 μM markedly inhibited lipid accumulation and reduced TG content in differentiating 3T3-L1 cells with no cytotoxicity. Furthermore, DHA at 5 μM inhibited the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A as well as the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. Moreover, while DHA at 5 μM had no effect on the mRNA expression of adiponectin, it strongly suppressed that of leptin in differentiating 3T3-L1 cells. However, DHA at 5 μM had no lipolytic effect on differentiated 3T3-L1 cells, as assessed by no enhancement of glycerol release. Conclusions: These results demonstrate that DHA at 5 μM has a strong anti-adipogenic effect on differentiating 3T3-L1 cells through the reduced expression and phosphorylation of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3.