• Title/Summary/Keyword: Startup Sequence

Search Result 12, Processing Time 0.016 seconds

Current Status of Development Test of 75 tonf Engine System for KSLV-II (한국형발사체 75톤급 엔진 개발 시험 현황)

  • Kim, SeungHan;Kim, SeungRyong;Kim, SungHyuk;Kim, ChaeHyung;Seo, DaeBan;Woo, SeongPil;Yu, ByungIl;So, YoonSeok;Lee, KwangJin;Lee, SeungJae;Lee, JungHo;Lim, JiHyuk;Jeon, JunSoo;Cho, NamKyung;Hwang, ChangHwan;Park, Jea-Young;Han, YeongMin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.99-103
    • /
    • 2017
  • As a development test of the 75-tonf LOx/Kerosene liquid rocket engine for KSLV-II first Stage Engine, hot firing test of 75-tonf engine are performed. The current status of development test on first stage 75-tonf engine system including combustion chamber, turbopump, gas generator, propellant supply system are presented. During the 75tonf engine test campaign, the development of startup sequence of LOx-Kerosene engine system, engine startup using pyrostarter, ignition of gas generator, steady operation and engine shutdown is successfully performed. As a passenger test during engine hot firing tests, Thrust Vector Control system (TVC) of the engine are also evaluated during engine hot firing test. The results of hot firing test of 75-tonf thrust engine system will be used for the design confirmation and performance evaluation of 75 tonf engine system for KSLV-II first Stage.

  • PDF

FEXT cancellation for high-speed local transmission over twisted pair wiring (동축 선로에서의 초고속 근거리 전송을 위한 FEXT 제거기)

  • 우정수;강규민;임기홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8C
    • /
    • pp.782-791
    • /
    • 2002
  • This paper discusses a far-end crosstalk (FEXT) canceller for twisted-pair transmission. Many twisted-pair systems such as fiber-to-the-curb (FTTC), very high-speed digital subscriber line (VDSL), and high-speed LAN systems, use frequency-division duplexing (FDD) for duplex transmission. It is shown that the maximum reach of FDD twisted-pair system is limited by the performance of its upstream channel, which is located at higher frequencies than the downstream channel. In order to improve the performance of such FDD transceiver, FEXT cancellation is introduced for the channel at higher frequencies. A system arrangement and its blind start-up procedure are studied when the FEXT canceller and equalizer are jointly adapted to combat channel intersymbol interference (ISI), FEXT, and other additive noise. The initial convergence and the steady-state behavior of the proposed twisted-pair system without requiring transmission of an ideal training sequence are investigated. Measured characteristics as well as analytical model of the FEXT channel are used to estimate the time span needed for the FEXT canceller. It is also shown that the memory span for the FEXT canceller is almost independent of the channel, thus making our results useful for the twisted-pair system over all different channels.