• Title/Summary/Keyword: Starting torque

Search Result 206, Processing Time 0.021 seconds

A Study Of Rotor Slot Shape For The High Starting Torque Performance On Three Phase Induction Motor (3상 유도전동기에서 고 기동TORQUE 특성을 위한 회전자 SLOT 형상에 관한 연구)

  • Kim, Byung-Ha;Jeong, Jang-Sik;Song, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.974-976
    • /
    • 1993
  • A design method of three phase induction motors that have characteristics of low starting current and high starting torque is proposed. This design method is based on the traditional theory related to the skin effect and the gap saturation effect. The starting performances and the analysis method are explained in short. Finally, comparison of example design data on electric hoist motor with standard motor is shown.

  • PDF

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

Position Sensorless Starting of BLDC Motor for Compressor (압축기용 BLDC 전동기의 센서리스 기동)

  • Lee, Kwang-Woon;Lee, Joon-Hwan;Choi, Jae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.440-446
    • /
    • 2006
  • The magnitude of output torque in a BLDC Motor depends on torque angle so that the exact initial position of rotor is essentially required for good starting. This paper presents a novel starting control method for smooth starting in a position-sensorless controlled BLDC motor drive for reciprocating compressor of refrigerator. The proposed method starts a BLDC motor using information on the initial position of rotor, determined from current response characteristics, and shows robust starting capability to starting load variations. The effectiveness of the proposed method is verified through experimental results.

Analysis of Starting Torque and Speed Characteristics for Squirrel Cage Induction Motor According to Material Properties of Rotor Slot

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.328-333
    • /
    • 2015
  • Squirrel cage induction motors have mostly been used for their small capacity because the starting torque is smaller than the starting current during start-up. However, as more and more mid-to-large capacity motors are developed, the demands for improvements in performance characteristics have also increased. In this study, the starting characteristics of squirrel cage induction motors were analyzed based on the rotor materials and shapes using a finite element method to provide design data suitable for different use purposes and capacities. We further completed analysis by combining electromagnetic equations deduced from Maxwell’s equations and the circuit equations of stators and rotors. A moving coordinator was introduced to rotate the rotor during the analysis, and the torques calculated via the finite element method were combined with the motion equations to calculate the position and angular velocity of the rotors at the next time, thereby analyzing the transient characteristics. The analysis results of the transient characteristics were applied to a 3-phase 4-pole 5-hp induction motor to calculate the starting torque, speed, and rotation angle of the rotors. In the reference model, the materials and shapes of the rotor slot were changed to copper and silicon copper and a deep slot, shallow slot, and long-neck-shaped slot.

Rotor Design to Improve Starting Performance of the Line-start Synchronous Reluctance Motor

  • Jung Tae-Uk;Nam Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.320-326
    • /
    • 2006
  • A single-phase line-start synchronous reluctance motor (LSSynRM) has merits of low cost, high efficiency and reliability. LSSynRM has an unbalanced magnetic circuit caused by flux barriers and various shapes of conductor bars when starting. Thus the motor may generate unstable starting torque in accordance with the initial starting position of the rotor. This paper presents the rotor design to improve starting performance of the LSSynRM. Design variables are the number and the shape of the conductor bars. This design result is compared with the initial prototype and single-phase induction motor.

Optimal Starting Torque Control of Wound Rotor Induction Motor by Microprocessor (개용분 PFN-PMW의 유전특성에 관한 연구)

  • Park, Min-Ho;Jung, So-Woong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.8
    • /
    • pp.316-324
    • /
    • 1984
  • In the wound rotor induction motor, the external resistor is usually added to the rotor circuit in order to limit the starting current. In this scheme, whilst the starting current is limited, the available torque is remarkably reduced. In this paper, to improve the starting characteristics the stator current can be maintained constant by adjusting the external resistor. To change the external resistor, teh chopper and the resistor is connected in parallel, and the chopper duty cycle is adjusted by microprocessor. The duty cycle is calculated according to the actual speed of motor by microprocessor look-up table map. In this suggested scheme, the starting characteristics are remarkably improved without over-current. The starting time of this system is reduced by 20-48 Percent compared with fixed extemal resistance system in the same load.

  • PDF

Starting Characterization of Induction Motor using Reactor Tap Change (리액터 탭 절환에 의한 유도전동기의 기동 특성)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.24-28
    • /
    • 2014
  • An induction motor is most widely used to obtain driving force in the industrial field. The induction motor is generated a high current at starting. A starting current is often more than five times of rated current. A high starting current can cause problems such as voltage drop in the power system. In order to solve these problems, a reactor starting method has been widely applied in a large motor capacity. There are differences in the operating characteristics of induction motor corresponding the switching time of reactor tap. In this study, I analyzed that current, torque, power of induction motor are different from changing time and tap setting values of reactor tap.

Dosing of Inductor Electronic Starting Switch of Single Phase Induction Motor (단상유도전동기의 인덕터 전자식 기동기 설계)

  • Seo, K.S.;Park, S.K.;Park, J.W.;Park, J.H.;Cho, G.B.;Baek, H.L.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.267-270
    • /
    • 2002
  • Fractional horse power single phase induction motors have no starting torque their own. So there are several ways of starting single phase induction motors. The most common type is the starting capacitor installed in series with the auxiliary winding to increase the starting torque. Also, the auxiliary winding is disconnected once the speed of the motor reaches 70 to 80 [%] of the rated speed. In the conventional systems, this function is conducted by a centrifugal switch. But the mechanical centrifugal switch has many problems such as switch malfunction. This paper presents the new methods of electronic starting switch by inductor to overcome these shortcomings of centrifugal switch.

  • PDF

Electromagnet Starting Device used in the Single-Phase SRM (단상 SRM에 사용되는 전자석 기동 장치)

  • Kim, Jun-Ho;Lee, Eun-Woong;Lee, Jong-Han
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.813-814
    • /
    • 2006
  • The squirrel case induction motor has widely used in the driving of the blowers but it is low efficiency and hard to control. So, the damper is used for the control of a flow and it cause to low the driving efficiency. Our laboratory has proposed the single-phase SRM(switched reluctance motor) for driving blowers. It has salient pole structure and can be reduced a number of semiconductors than three-phase SRM. But it can not be starting by itself and has heavier torque ripple than three-phase SRM. For self-starting the single-phase SRM is required the starting device which place the rotor at the rising inductance slope. On this paper, the electromagnet starting device is designed to generate the starting torque and to fix the rotating direction of the single-phase SRM which is fabricaed to use a blower.

  • PDF

A Study on Starting Current-Time Characteristics of a Small Squirrol Cage Induction Motor (소형농형3상유전전동기의 기동전류-시간에 관한 연구)

  • 노창주;김윤식
    • 전기의세계
    • /
    • v.27 no.5
    • /
    • pp.69-75
    • /
    • 1978
  • 3 phase induction motor applied in the method of connecting it directly across the line needs large current when it starts. At that time, leakage magnetic pathes of interior of the motor are severely saturated and leakage reactances are decreased because of saturation. Consequently, increased current and raised powerfactor yield increase of starting torque. The author, noticing those phenomena, derived experimentally the raion of decreasing leakage reactance from the fact that when voltage applied to motor is increased under locked condition the magnitude of current and phase angle are varied, and determined tha equations of starting current and starting torque, considering the decrease of leakage reactance by the large starting current. The author calculated the characteristics of Current-Time and Speed-Time with the determined equation at specific load conditions, and compared the values obtained from above calculations with those from circle diagram's method and the practically recorded values at same load conditions. Therefore, the authos got a confidience that the results of the derived theory coincide with the practically measured values more well than circle diagram's results and circle diagram's equation should be modified in order to analize the starting status of a induction motor.

  • PDF