• Title/Summary/Keyword: Starting engine

Search Result 190, Processing Time 0.023 seconds

A Linear Electromagnetic Motion Device for VVT in Combustion Engine (가변 밸브타이밍을 위한 신개념 전자기 리니어 엑츄에이터)

  • Kim, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.53-58
    • /
    • 2008
  • The traditional engine valve train in a combustion engine is the mechanically driven camshaft system that provides one-fixed valve timing. The variable valve timing (VVT), however, is highly required to achieve the significant improvement in fuel economy. To achieve VVT in combustion engine, the solenoid type of actuator had been developed in past years, but it requires current in all operation period, the starting is difficult and the efficiency is low. In this paper, a new linear actuator using permanent magnet (PM) is proposed and verified its feasibility by finite element (FE) analysis.

Engine Mounting System Optimization for Improve NVH (NVH 향상을 위한 엔진 설치 시스템 최적화)

  • Kim, Jang-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4665-4671
    • /
    • 2013
  • Engine mounting system is the most responsible system for NVH performance of vehicle. The vibration at idle shake, road shake, Key ON/OFF, gear shift tuned by the engine mount position and stiffness. Previously described Engine mounting system theory investigated and summarized in this paper. Decoupling of the Power train rigid mode and Reducing the angle between Torque-Roll-Axis and Elastic-roll-Axis is starting point of optimization. Multi-optimization analysis was performed because of variety simulation case and FE-model. Eventually, Find the best mount location and the stiffness has improved the performance of the vehicle NVH.

The Evaluation of an Electric Hybrid Power System for the High Endurance Drone (장기체공 드론용 하이브리드 전기 추진시스템 성능 평가)

  • Gang, Byeong Gyu;Kim, Keun-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.539-544
    • /
    • 2022
  • This research shows the test performance of a 6 kW-scale hybrid electric power system for the high endurance drone. The power system is composed of a two-stroke reciprocal engine, starter-generator and battery, and they are integrated as one power unit. The engine is designed to provide the house for holding the starter-generator at the end of a crankshaft in turn the engine and starter-generator can maintain the same speed during the operational period. In this way, the generated power is readily controlled by just manipulating an engine throttle movement. Moreover, the starter-generator can initiate an engine operation with an aid of battery power until the combustion process becomes stabilized. In consequence, integration mechanism between an engine and generator is simplified, which results in weight reduction achieved. The duty of back-up battery is to provide a starting power to generator via a system controller in addition to covering momentarily power shortage. Therefore, the electric power system is vindicated to provide 6 kW power through a ground test.

Studies on Starting Transient in Solid Rockets

  • V.R. Sanal Kumar;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.6-10
    • /
    • 2003
  • Accurate description of starting transient history allows and justifies the use of small margin of safety for the engine parts, resulting in high motor mass ratio in addition to satisfying the control and guidance requirements of the vehicle. Studies have been carried out for the prediction and reduction of ignition peak and pressure-rise rate during the starting transient of solid rocket motors. Numerical studies have been carried out using a two dimensional Navier-Stokes solver. It has been inferred through the parametric studies that, in the case of solid rocket motors with uniform port, high ignition peak is observed at high spread rate and low pressure-rise rate. In the case of the port with sudden expansion configuration, high ignition peak is observed at relatively high average spread rate and high-pressure rise rate. These studies are expected to aid the designer in reducing the ignition peak by altering the propellant properties or igniter characteristics without sacrificing the motor performance.

  • PDF

Seat Belt Usage Rate and Unconscious Behavior in the Fastening Process (안전벨트 착용과정에서 무의식적 행위와 착용비율)

  • Hong, Seung-Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.959-964
    • /
    • 2010
  • Seat belt is an important means to protect drivers and passengers from the damages by car accidents. Many ways to increase the seat belt wearing rate have been proposed through human factors researches. The primary ways to increase seat belt use rate have emphasized the intention-behavior cycle. This study focused on the gap between intention and behavior. The gap may be bridged by the habit for seat belt use behavior. Divers following a desirable car starting sequence, from sitting on the chair, fastening seat belt, starting engine to moving a car, reported that higher belt wearing rate and unconscious behavior (automated response). That is, the habitualized procedure knowledge prevented drivers from forgetting to fasten their seat belt. The reminder systems such as warning light and warning sound could not significantly give an influence in remembering to fasten seat belt. In order to increase the seat belt use rate, the desirable car starting procedure should be included in the driving education program.

The Analysis of High Frequency Signal for 7tonf-class Power Pack System of KSLV-II (한국형발사체 7톤 파워팩 시스템 고주파 신호 분석)

  • So, Younseok;Yi, Seungjae;Lee, Kwangjin;Kim, Seunghan;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.96-102
    • /
    • 2016
  • The 7tonf-class power pack test at turbopump test facility in Naro space center was performed for confirmations of starting/running/ending operation characteristics before 7tonf rocket engine hot-firing test. The dynamic pressure mounted on a combustion chamber of gas generator is measured under 0.2 bar which does not conditioned to the unstable combustion. The analysis results of RPM and acceleration sensors mounted on the turbopump, the power pack test was performed to the estimated RPM with the stable combustion.

IDLE PERFORMANCE OF AN SI ENGINE WITH VARIATIONS IN ENGINE CONTROL PARAMETERS

  • Kim, D.S.;Cho, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.763-768
    • /
    • 2006
  • Emission reduction in the cold start period of SI engines is crucial to meet stringent emission regulations such as SULEV Emissoin reduction is the starting point of the study in the which the variable valve timing (VVT) technology may be one promising method to minimize cold start emissions while maintaining engine performance. This is because it is possible to change valve overlap and residual gas fraction during cold start and idle operations. Our previous study showed that spark timing is another important factor for reducing cold-start emissions since it affects warm-up time of close-coupled catalysts (CCC) by changing exhaust gas temperature. However, even though these factors may be favorable for reduction of emissions, they may deteriorate combustion stability in these operating conditions. This means that the two variables should be optimized for best exhaust emissions and engine stability. This study investigated the effects of valve and spark timings in idle performance such as combustion stability and exhaust emissions. Experiments showed that valve timings significantly affected engine stability and exhaust emissions, especially CO and $NO_x$, due to change in residual gas fraction within the combustion chamber. Spark timing also affects HC emissions and exhaust gas temperature. Yet it has no significant effects on combustion stability. A control strategy of proper valve timing and spark timing is suggested in order to achieve a reduction in exhaust emissions and a stable operation of the engine in a cold start and idle operation.

An Experimental Study on the Reduction of Exhaust Emissions by using Glow Plug during Cold-start and Warm-up in Gasoline Engine (가솔린기관의 냉시동시 Glow Plug를 이용한 배기가스저감에 관한 실험적 연구)

  • 문영호;김종호;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.7-14
    • /
    • 2002
  • In order to reduce exhaust omissions of spark ignition engine, it is important not only to improve catalyst conversion efficiency but also to directly reduce engine out exhaust emissions, during cold starting and warm up process. Therefore many researchers have been attracted to develop an early fuel evaporator(EFE) by Introducing a ceramic heater fur a solution of engine out exhaust emissions in SI engine. But, the performance of the EFE in MPI engine to reduce the exhaust emissions and to improve the cold startability has not been clarified yet. The purpose of this study is to evaluate the feasibility of a glow plug far EFE. Impinging spray using heated and unheated glow plug helps the vaporization of the fuel and heat up the three way catalyst sufficiently. The amount of CO, and UHC is reduced overall. The amount of NOx is higher at the initial stage, but become lower as time goes on than without glow plug.

Full Rig Test and High Altitude Ignition Test of Micro Turbojet Engine Combustor (초소형 터보제트엔진 연소기의 리그시험 및 고고도 점화시험)

  • Lee, Dong-Hun;Kim, Hyung-Mo;Park, Poo-Min;You, Gyung-Won;Paeng, Ki-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.373-376
    • /
    • 2009
  • A full rig combustor test and altitude ignition test were carried out for radial-annular combustor of micro turbojet engine. 11.2% total pressure loss and 99.85% of combustion efficiency were measured at design point of engine under sea level standard condition and $2{\sim}6$ of air excess ratio for ignition envelope was achieved on engine starting regime. Finally, A 30,000 ft high altitude ignition test was also performed and finally we found out that the developed radial-annular combustor is appropriate to micro turbojet engine.

  • PDF

A Study on the Cyclogram for the Firing Test of KSR-III Liquid Rocket Engine (KSR-III 주엔진 연소시험 Cyclogram에 대한 고찰)

  • 한영민;조남경;박성진;이수용;이대성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.19-27
    • /
    • 2002
  • The sequence of the propellant supply for ignition of a liquid rocket engine combustor is very important in the reliable and safe operation of the engine. The ignition sequence of KSR-III main engine was briefly described and the measuring parameters and their reliability determining ignition sequence were examined in this paper. The filling time of the engine propellant manifolds and the valve open/close time were reviewed to obtain the exact and reliable time of the propellant supply to the combustor. The combustion characteristics of the engine at starting were discussed at different supply lead of propellant. Finally, the hot firing test results with cyclogram determined by measuring parameters were presented.