• Title/Summary/Keyword: Start-up tests

Search Result 55, Processing Time 0.025 seconds

Modeling of Liquid Rocket Engine Components Dynamics at Transient Operation (액체로켓엔진 천이작동 예측을 위한 구성품 동특성 모델링)

  • Kim, Hyung-Min;Lee, Kuk-Jin;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2011
  • Mathematical modelling for liquid rocket engine(LRE) main components were conducted to predict the dynamic characteristics when the LRE operates at the transient condition, which include engine start up, shut down, or thrust control. Propellant feeding system is composed of fuel and oxidizer feeding components except for regenerative cooling channel for the fuel circuit. Components modeling of pump, pipe, orifice, control valve, regenerative cooling channel and injector was serially made. Hydraulic tests of scale down component were made in order to validate modelling components. The mathematical models of engine components were integrated into LRE transient simulation program in concomitant with experimental validation.

Delayed Operation Characteristics of Power Shuttle According to Hydraulic Oil Temperature in the Hydraulic Circuit of Agricultural Tractor

  • Park, Yoon-Na;Kim, Dae-Cheol;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: During the start-up period, the response time of a hydraulic system increases in the winter because of the increased oil viscosity caused by the cold weather. The problems of delayed tractor starting and excessive wear of the clutch disk occur for these reasons. Therefore, this study develops an analysis model using the commercial hydraulic analysis program AMESim to examine the characteristics of delays in power shuttle starting at different oil temperatures. Methods: In the experiment, a tractor was stationary on a flat surface with the engine running at a constant speed of 1,080 rpm. The forward lever was then pressed to activate the power shuttle at three different oil temperatures, and the pressure changes were measured. The pressure on the forward clutch control valve was measured by a pressure gauge installed on the hydraulic line supplied to the transmission from the main valve. An analysis model was also developed and verified with actual tests. Results: The trend of the simulated pressures of the power shuttle is similar to that of the measured pressures, and a constant modulation period was observed in both the simulation and test results. However, the difference found between the simulation and test results was the initial pressure required to overcome the initial force of the clutch spring. Conclusions: This study also examines the characteristics of the delayed startup of the power shuttle at different oil temperatures through simulations.

Operating Characteristics of 5MW Class Gas Turbine Engine for Power Generation (5MW급 발전용 가스터빈 엔진의 작동 특성)

  • Park, Jun-Cheol;Hong, Sung-Jin;Bograd, Alexander;Ryu, Je-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.331-334
    • /
    • 2010
  • Operating characteristics of DGT-5 being developed by Doosan Heavy Industries & Construction Co., Ltd. for power generation service was evaluated. Starting behavior was improved by a series of tests to investigate the effect of various fuel schedule and several combination of bleed valve control. The engine showed stable operation without any instability of compressor in the full operating regime covering from start-up to load conditions. If there is a rapid change of load in the condition of synchronization to Grid, the engine can be controlled stably based on the analysis of dynamic responses of the engine to an rapid load change and a sudden load rejection.

  • PDF

Development of Electric Instrument of Current and Leakage Current based on NI-9223 and Current Prove (NI-9223과 전류프로브를 이용한 전류 및 누설전류 측정장치 개발)

  • Kim, Sung-Chul;Kim, Un-Sul
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.48-53
    • /
    • 2012
  • This paper is purposed to develop portable electric instrument to select NI-9223(National instrument comp.) and clamp meter(HIOKI comp.), which can be used in developing electric instrument, to detect leakage current(ZCT) and current(CT) signals. In this paper, The electric instrument that can interface with current and leakage current instrument(HIOKI 9283), is developed by NI-9223 of NI comp.. HIOKI clamp meter can measure current signals certainly by high-sensitivity of 10 ${\mu}A$ resolution(leakage current : at 10 mA range) and current 1~200A range. The NI-9223 use four 16-bit analog-to-digital converters(ADCs) for true simultaneous sampling at up to 1 MS/s per channel. NI-9223 can synchronize all analog input modules installed in the same chassis to share the same start clock and/or sample clocks. The monitoring program is developed by SignalExpress of LabVIEW. The monitoring program are developed to analyze at simultaneous sampling on electrical signals such as leakage current(ZCT) and current(CT). The developed system verification tests were conducted, and portable electric instrument can be used in place which requires analysis of the actual electrical signal.

Freeze/Thaw cycle effects on GDLs and MEAs of PEFC (동결/해동 열사이클이 PEFC의 GDL/MEA에 미치는 영향)

  • Lim, Nam-Yun;Park, Gu-Gon;Park, Jin-Soo;Yoon, Young-Gi;Lee, Won-Yong;Lim, Tae-Won;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.96-98
    • /
    • 2006
  • Proper water management is vital to achieve high performance and durability of PEFC (Polymer Electrolyte Fuel Cell). The effects of the residual water from PEFC after purge in shut-down processes on GDL/MEAs were investigated with freeze/thaw cycles Freeze/thaw cycle tests were conducted with single cells which were designed from transparent acryl plates. Single cells which contain several amount of residual water were cycles from $80^{\circ}C$ to $-28^{\circ}C$. The resistance changes of the single cells which have various amount of residual water were evaluated by ac-impedance analysis with 24 times of freeze/thaw cycles. Also, after the freeze/thaw cycles, the property changes were characterized by visual methods such as SEM, EPMA. Though it was difficult to observe noticeable property changes in the visual characterizations, the resistance of cells dramatically increased with the amount of remained water.

  • PDF

CEFR control rod drop transient simulation using RAST-F code system

  • Tuan Quoc Tran;Xingkai Huo;Emil Fridman;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4491-4503
    • /
    • 2023
  • This study aimed to verify and validate the transient simulation capability of the hybrid code system RAST-F for fast reactor analysis. For this purpose, control rod (CR) drop experiments involving eight separate CRs and six CR groups in the China Experimental Fast Reactor (CEFR) start-up tests were utilized to simulate the CR drop transient. The RAST-F numerical solution, including the neutron population, time-dependent reactivity, and CR worth, was compared against the measurement values obtained from two out-of-core detectors. Moreover, the time-dependent reactivity and CR worth from RAST-F were verified against the results obtained by the Monte Carlo code Serpent using continuous energy nuclear data. A code-to-code comparison between Serpent and RAST-F showed good agreement in terms of time-dependent reactivity and CR worth. The discrepancy was less than 160 pcm for reactivity and less than 110 pcm for CR worth. RAST-F solution was almost identical to the measurement data in terms of neutron population and reactivity. All the calculated CR worth results agreed with experimental results within two standard deviations of experimental uncertainty for all CRs and CR groups. This work demonstrates that the RAST-F code system can be a potential tool for analyzing time-dependent phenomena in fast reactors.

Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

  • Kim, Nam In;Kim, Young Sik;Kim, Kyung Soo;Chang, Hyun Young;Park, Heung Bae;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001~0.075% were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel.

Hepatitis B and C Seroprevalence in Solid Tumors - Necessity for Screening During Chemotherapy

  • Oguz, Arzu;Aykas, Fatma;Unal, Dilek;Karahan, Samet;Uslu, Emine;Basak, Mustafa;Karaman, Ahmet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1411-1414
    • /
    • 2014
  • Background: Hepatitis B and C are the leading causes of liver diseases worldwide. For hematological and solid malignancy patients undergoing chemotherapy, increases in HBV DNA and HCV RNA levels can be detected which may result in reactivation and hepatitis-related morbidity and mortality. The aim of this study was to determine the seroprevalence of Hbs ag and Anti HCV positivity in patients with solid malignancies undergoing chemotherapy and consequences during follow-up. Materials and Methods: The files of 914 patients with solid malignancies whose hepatitis markers were determined serologically at diagnosis were reviewed retrospectively. All underwent adjuvant/palliative chemotherapy. For the cases with HBV and/or HCV positivity, HBV DNA and HCV RNA levels, liver function tests at diagnosis and during follow-up and the treatment modalities that were chosen were determined. Results: Of 914 cases, Hbs Ag, anti Hbs and anti HCV positivity were detected in 40 (4.4%), 336 (36.8%) and 26 (2.8%) of the cases respectively. All of the Hbs ag positive patients received prophylactic lamuvidine before the start of chemotherapy. In the Hbs ag and anti HCV positive cases, liver failure was not detected during chemotherapy and a delay in chemotherapy courses because of hepatitis was not encountered. Conclusions: Just as with hematological malignancies, screening for HBV and HCV should also be considered for patients with solid tumors undergoing chemotherapy. Prophylactic antiviral therapy for HBV reduces both the reactivation rates and HBV related mortality and morbidity. The clinical impact of HCV infection on patients undergoing chemotherapy is still not well characterized.

Anaerobic codigestion of urban solid waste fresh leachate and domestic wastewaters: Biogas production potential and kinetic

  • Moujanni, Abd-essamad;Qarraey, Imane;Ouatmane, Aaziz
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • The Biochemical Methane Potential (BMP) of fresh leachate and domestic wastewaters codigestion was determined by laboratory Bach Tests at $35^{\circ}C$ over a period of 90 d using a wide range of leachates volumetric ratios from 0% to 100%. To simulate wastewaters plant treatment step, all the ratios were first air stripped for 48 h before anaerobic incubation. The kinetic of biogas production was assessed using modified Gompertz model and exponential equation. The results obtained showed that cumulative biogas production was insignificant in the case of wastewaters monodigestion while the codigestion significantly improves the BMP. Air stripping pretreatment had positive effect on both ammonium concentration and volatiles fatty acids with reduction up to 75% and 42%, respectively. According to the Modified Gompertz model, the optimal anaerobic co-digestion conditions both in terms of maximal biogas potential, start-up period and maximum daily biogas production rate, could be achieved within large leachate volumetric ratios from 25% to 75% with a maximum BMP value of 438.42 mL/g volatile solid at 50% leachate ratio. The positive effect of codigestion was attributed to a dilution effect of chemical oxygen demand and volatile fatty acid concentrations to optimal range that was between 11.7 to $32.3gO_2/L$ and 2.1 to 7.4 g/L, respectively. These results suggested that the treatment of fresh leachate by their dilution and co digestion at wastewaters treatment plants could be a promising alternative for both energetic and treatment purposes.

Effectiveness and Safety of Pharmacopuncture Therapy for Chronic Low Back Pain: A Study Protocol for a Pragmatic Randomized Controlled Trial

  • Youn Young Choi;Hwa Yeon Ryu;Jae Hui Kang;Hyun Lee
    • Journal of Acupuncture Research
    • /
    • v.41 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • Background: Low back pain (LBP) is a common musculoskeletal disorder worldwide, with a lifetime prevalence of up to 80%. Among nonsurgical treatments for chronic LBP, Korean medicine treatments are highly preferred, and pharmacopuncture therapy combining acupuncture and herbal medicine is widely used. However, no evidence-based study has focused on the use of various types of pharmacopuncture. Methods: The pragmatic randomized controlled clinical trial will include 44 participants; recruitment will start in July 2023. All participants will receive integrated Korean medicine treatment including acupuncture, cupping, and infrared therapy, and the intervention group will also receive pharmacopuncture. After 16 treatment sessions, twice a week for 8 weeks, follow-up assessments will be performed at week 9. As a pragmatic randomized controlled clinical protocol, the type, dose, and acupoints of acupuncture and pharmacopuncture are not determined in advance but are selected and recorded according to the clinical judgment of the Korean medicine doctor. Results: The primary outcome will be measured using a visual analog scale score, and the secondary outcomes include the Oswestry disability index, patient global impression of change, no worse than mild pain, and range of motion. Safety will be assessed by examining participants' self-reported adverse events and vital signs and conducting blood tests before and after the test. Conclusion: This study aims to provide clinical evidence of the effectiveness and safety of pharmacopuncture for chronic LBP.